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1 Introduction

Governments in emerging economies heavily depend on bonds issued in liquid international

capital markets for their overall financing. The behavior of investors in these markets is

thus crucial to understanding governments’ borrowing costs, default risk, and optimal debt

management. Standard sovereign debt models often assume that investor demand is perfectly

elastic, implying that investors are willing to lend any amount governments request at the

risk-free rate plus a default-risk premium. This assumption on investor behavior contrasts

with a body of recent work for other asset markets that allows for a richer demand structure,

typically involving an inelastic or downward-sloping demand (Koijen and Yogo, 2019; Gabaix

and Koijen, 2021; Vayanos and Vila, 2021; Gourinchas et al., 2022; Greenwood et al., 2023).

This paper presents novel evidence of downward-sloping demand curves in risky sovereign

bond markets and analyzes their impact on governments’ optimal debt policies. We first

estimate high-frequency bond price reactions to shocks to passive investors’ demand, unrelated

to fundamentals. These shocks come from monthly variations in the composition of the

largest benchmark index for U.S. dollar-denominated bonds from emerging economies, the J.P.

Morgan Emerging Markets Bond Index Global Diversified (EMBIGD). Changes in this index

affect the demand of passive investors that seek to replicate its composition and imply a shift

in the supply of bonds available to active investors. We find that bond prices significantly

react to these shocks. Our estimates imply an inverse price demand elasticity of −0.30, which

we call a reduced-form elasticity.

We then formulate a quantitative sovereign debt model that features endogenous bond

issuances and default risk, and discipline it based on our reduced-form estimates. The goal

of the model is twofold. First, we use it to isolate the part of the estimated reduced-form

elasticity explained by endogenous responses in government debt policy and future bond

payoffs, allowing us to identify a structural elasticity. Our findings show that these endogenous

forces explain over one-third of the reduced-form elasticity. Second, we analyze the aggregate

implications of a downward-sloping demand in risky sovereign debt markets. In the presence

of inelastic investors, an additional unit of debt reduces bond prices even if default risk is

constant, which increases governments’ borrowing costs. Since governments internalize this

effect, an inelastic demand limits debt issuances and acts as a disciplining device. Using

our calibrated model, we show that this channel significantly reduces default risk and bond

spreads.

To guide our empirical analysis, we start from a simple framework where investors are
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heterogeneous in their degree of activism (or passivism), i.e., in how they allocate their funds

across risky assets. We define passive demand as the portion of investors’ holdings aimed at

replicating the index composition they follow. The passive demand is perfectly inelastic and

shifts with changes in index weights. For any asset in fixed supply, a higher passive demand

implies a leftward shift in the “effective supply,” the quantity of bonds available to active

investors. If this shift is unrelated to country fundamentals, and assuming that future asset

payoffs remain fixed, this variation can be used to examine whether active investors’ demand

curves slope downward and to measure their demand elasticity (Pandolfi and Williams, 2019;

Pavlova and Sikorskaya, 2022). Nevertheless, if expected payoffs endogenously respond to

changes in the effective supply, any observed price variation resulting from the shift could over

or underestimate the demand elasticity. Since asset prices and payoffs are jointly determined,

this potential response motivates the need for a structural model in which prices, the bond

supply, and expected payoffs are endogenous outcomes.

On the empirical front, we identify shifts in a country’s effective supply of sovereign

bonds by exploiting monthly rebalancings in the EMBIGD. We derive a measure of the flows

implied by the rebalancings (FIR), combining the assets passively tracking the EMBIGD

with the index’s monthly changes. These frequent rebalancings occur because qualifying

new bond issuances are incorporated into the EMBIGD, while maturing bonds are removed.

These adjustments alter country weights in the index, triggering similar rebalancings in the

portfolios of passive investors replicating it to minimize potential tracking error costs. Our

FIR measure takes advantage of these rebalancings and measures the consequent shifts in the

available bond supply to active investors. Intuitively, a 1 p.p. FIR implies a 1% reduction in

the supply of the country’s bonds available to active investors at the time of the rebalancing.

While the FIR reflects changes in the available bond supply, it may be influenced by

country fundamentals and other factors that affect bond prices. First, when a country issues

new bonds that are added to the index or retires existing ones, its weight changes, and so

does its FIR. Second, even for countries with a constant amount of debt outstanding, changes

in bond prices are still mechanically correlated with the FIR, since index weights depend

on bond prices. Because issuances or retirements, as well as changes in bond prices, can be

correlated with a country’s fundamentals (e.g. changes in sovereign risk), we cannot directly

use the FIR to estimate the price demand elasticity.

To address these issues, we focus on each rebalancing date only on countries that do

not experience changes in the face amount of outstanding index bonds and construct an

instrument for the FIR that exploits the specific weighting scheme of the EMBIGD. Our
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instrument consists of the percentage change in countries’ synthetic index weights, which we

compute based on their eligible bonds’ face value rather than market value and, therefore, do

not mechanically correlate with bond prices. Since we focus on countries with constant debt

outstanding, the variation in our instrument comes from other countries’ bond issuances or

retirements. Importantly, this variation depends on a diversification rule of the EMBIGD

that imposes caps on country weights based on the face amount of their outstanding bonds.

When countries in the EMBIGD issue or retire bonds, the synthetic weights of other countries

in the index are affected according to how much those changes impact the cap on their

weights, leading to varying bond inflows or outflows. We then combine our instrument with

the specific timing of the rebalancings, which become effective on the last business day of

each month, to analyze how bond prices react to FIR shocks in small time windows around

the rebalancing dates.

Our analysis reveals that a higher FIR leads to higher bond prices. On average, a 1

percentage point (p.p.) increase in the FIR corresponds to a 30 basis point increase in bond

prices. These estimates imply a reduced-form inverse demand elasticity of −0.30. We find

that these price reactions vary across countries with different levels of default risk. For

countries with higher default risk, a 1 p.p. change in FIR results in up to a 41 basis point

increase in bond prices. In contrast, for safer countries, the estimates are smaller (an 11 basis

point increase) and statistically not significant. Overall, these findings suggest that investors

demand a premium as compensation for holding risky bonds (in excess of their default risk),

which gives rise to an inconvenience yield.

On the quantitative front, we formulate a sovereign debt model where the government

has limited commitment and can endogenously default on its debt obligations. Standard

models of this nature typically assume a perfectly elastic demand for sovereign bonds, with

changes in bond prices driven solely by variations in default risk (Arellano, 2008; Chatterjee

and Eyigungor, 2012). We extend these models using a richer demand structure that includes

both active and passive investors and a downward-sloping demand curve for active investors

that is modeled following Gabaix and Koijen (2021). Specifically, we assume that active

investors have a mandate that determines how they should allocate their funds. They can

deviate from that mandate based on bonds’ expected returns but are limited in the extent

to which they can do so. To create a tight link with our empirical analysis, we introduce

secondary markets where bonds are traded. By shocking the passive demand, we can replicate

our empirical reduced-form elasticity within the model.

We use the calibrated model to decompose the estimated reduced-form elasticity into two
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components: the downward-sloping part of the demand curve (i.e., the structural elasticity)

and the endogenous changes in expected future bond payoffs, which are influenced by how

government issuances respond to the FIR shock. We find that changes in future bond payoffs

account for one-third of the reduced-form elasticity. Their impact grows as the persistence of

the shock increases.

Overall, our results underscore the importance of accounting for issuers’ endogenous

responses and changes in the expected asset repayment. These factors alleviate potential

biases in estimating demand elasticities. Our FIR measure is inherently more temporary

than other instruments used in the literature, such as index additions or deletions or index

methodological recompositions. Still, we find that endogenous changes in expected bond

repayments can account for about one-third of the total price response.

Our model also allows us to examine the implications of a downward-sloping demand curve

on the optimal government debt and default policies. In the presence of inelastic demand,

we observe lower default risk and higher bond prices for similar debt levels compared to a

scenario with perfectly elastic demand. This outcome is not driven by a convenience yield

(i.e., a higher price that investors are willing to pay for the bond) but rather by the inelastic

demand serving as a disciplining device for the government. The underlying mechanism is

as follows: with a downward-sloping demand, issuing an additional unit of debt decreases

bond prices even if default risk remains fixed. As a result, the government finds that issuing

large amounts of debt is too costly, thus limiting the maximum amount of debt it is willing

to issue. In our quantitative analysis, we find that this limit leads to a substantial reduction

in default risk of around 25%, which lowers bond spreads and the government’s borrowing

costs. On the other hand, we show that an inelastic demand leads to a debt policy that is

less responsive to shocks. On balance, we find that the benefits derived from the disciplining

device dominate, and the government is better off in the presence of inelastic investors.

Our findings contribute to various strands of literature. First, we contribute to a

long-standing literature using index rebalancings to estimate asset price reactions, demand

elasticities, and changes in investors’ portfolios across different asset classes (Harris and

Gurel, 1986; Shleifer, 1986; Greenwood, 2005; Hau et al., 2010; Chang et al., 2014; Raddatz

et al., 2017; Pandolfi and Williams, 2019; Pavlova and Sikorskaya, 2022; Beltran and Chang,

2024).1 Our contribution lies in showing that demand curves slope downward in one of the

most relevant markets for government financing in emerging economies: the international

1Beyond index rebalancings, Ray, Droste, and Gorodnichenko (2024) use high-frequency U.S. Treasury auctions
to estimate the effect of demand shocks on Treasury yields. Monteiro (2024) uses auction data for Portuguese
sovereign bonds.
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U.S. dollar bond market.

An important contribution of our work is showing that, even in response to exogenous

supply-shifting shocks, part of the price movement can be attributed to changes in assets’

expected payoffs rather than solely reflecting an inelastic demand component. Our analysis

can be applied to any asset, beyond sovereign bonds, whose future cash flows or payoffs

are affected by movements in the effective supply. As such, it can be extended to a vast

literature that uses exogenous shifts in the effective supply as an instrument to estimate

demand elasticities. Typical examples are sovereign and corporate bonds and equities from

both developed and emerging economies.

Second, a growing literature on inelastic financial markets emphasizes the role of the

demand side in explaining asset prices across various financial markets (Koijen and Yogo,

2019; Gabaix and Koijen, 2021; Vayanos and Vila, 2021). Taking as given expected asset

payoffs, this literature analyzes how an inelastic demand affects the pricing of risk-free U.S.

Treasuries (Krishnamurthy and Vissing-Jorgensen, 2012; Greenwood et al., 2015; Mian et al.,

2022; Jiang et al., 2024) and international financial assets (Koijen and Yogo, 2020; Gourinchas

et al., 2022; Greenwood et al., 2023).2 Similar to our study, Choi, Kirpalani, and Perez (2024)

analyze the effects of a downward-sloping demand on the optimal issuance of safe government

bonds. In contrast, we focus on the interplay between a downward-sloping demand curve,

default risk, and the provision of risky bonds.3 We show that the demand elasticity interacts

with default risk and influences a government’s supply of risky bonds.

Third, our study also connects to a body of work examining how changes in the investor

base of government debt impact bond yields (Warnock and Warnock, 2009; Dell’Erba et al.,

2013; Peiris, 2013; Arslanalp and Poghosyan, 2016; Ahmed and Rebucci, 2024). In related

work, Fang et al. (2022) develop a demand system to quantify how changes in the composition

of investors (domestic versus foreign, banks versus non-banks) affect government bond yields in

international markets. Zhou (2024) focuses on emerging market sovereign debt and shows that

differences in a country’s foreign investor base can help explain the heterogeneous influence

of the global financial cycle. In this paper, we exploit exogenous changes in the composition

of the investor base (passive versus active funds) to provide evidence of downward-sloping

demand curves for risky sovereign bonds.

2A related literature focuses on U.S. and international corporate bond markets (Dathan and Davydenko, 2020;
Bretscher et al., 2022; Calomiris et al., 2022; Kubitza, 2023).
3Kaldorf and Rottger (2023) analyze the implications of convenience yields on the pricing and optimal supply
of risky sovereign bonds. In their setup, and similarly to Choi et al. (2024), investors are willing to pay a higher
price for holding risky sovereign bonds due to their collateral services. In contrast, based on our empirical
results, our model assumes that investors demand a premium (an inconvenience yield) for holding risky bonds.

5



Fourth, our paper relates to a large literature on quantitative sovereign debt models

(Aguiar and Gopinath, 2006; Arellano, 2008; Chatterjee and Eyigungor, 2012). Our framework

extends standard models by introducing a downward-sloping demand for bonds, different

investor types (active and passive), and secondary bond markets, which creates a tight link

with our empirical analysis and allows us to discipline the model based on our reduced-form

estimates.4 Using this setup, we show that an inelastic demand serves as a disciplining device

that lowers default risk. In this regard, our paper connects to a broader literature on the

use of fiscal rules as commitment devices (Alfaro and Kanczuk, 2017; Dovis and Kirpalani,

2020; Hatchondo et al., 2022; Bianchi et al., 2023). We show that if the demand for bonds is

inelastic, the market by itself can create incentives that discourage borrowing and decrease

default risk.

In our analysis, we are agnostic about the mechanisms behind the downward-sloping

demand. Previous work by Borri and Verdelhan (2010), Lizarazo (2013), Pouzo and Presno

(2016), and Arellano et al. (2017) analyzes sovereign debt models with risk-averse investors.

In these models, investors are inelastic because they must be compensated for each additional

unit of risky debt they hold. There are several other mechanisms that can explain a

downward-sloping demand. For example, it can be driven by regulatory limitations such as a

Value-at-Risk (VaR) constraint (Gabaix and Maggiori, 2015; Miranda-Agrippino and Rey,

2020), by liquidity considerations (He and Milbradt, 2014; Moretti, 2020; Passadore and Xu,

2022; Chaumont, 2024), by investors’ buy-and-hold strategies, or by fixed-share mandates

specifying how investors should allocate their funds across assets (as in Gabaix and Koijen,

2021). Our setup relies on a flexible demand structure that can accommodate any of these

potential drivers. Our aim is not to uncover the causes of investors’ inelastic behavior but to

examine its aggregate implications.

The rest of the paper is structured as follows. Section 2 introduces a simple framework

to guide our analysis. Section 3 presents the empirical analysis, including details on the

institutional setup of the EMBIGD index, data sources, identification strategy, and results.

Section 4 formulates a sovereign debt model with endogenous default and inelastic investors,

and Section 5 presents the quantitative analysis. Section 6 concludes.

4Our paper is related to recent work by Costain et al. (2022), who introduce endogenous default risk into a
Vayanos-Vila preferred habitat model to analyze the term structure of interest rates in the European Monetary
Union.
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2 Index Rebalancings as Passive Demand Shocks

We present a simple framework to guide our empirical analysis. The setup builds on Pavlova

and Sikorskaya (2022) and illustrates how one can use index rebalancings to identify changes

in the passive demand that shift the (effective) bond supply available to active investors.

These shifts can then be used to estimate reduced-form price demand elasticities. Although

we focus on the case of sovereign bonds, the same methodology can be applied to any asset

(e.g., equities).

Consider a bond i that is part of a benchmark index I. Investors are heterogeneous in

their degree of activism or passivism. That is, they track the composition of the I index but

differ in how actively or passively they do so.5 Let wt =
{
w1
t , ..., w

N
t

}
denote the vector of

time-varying index weights for each constituent bond of I. We define the passive demand,

T i
t (w

i
t), as the portion of investors’ holdings aimed at replicating the composition of the I

index. We explicitly write T i
t (w

i
t) as a function of wi

t to emphasize its dependence on the

index weights. This demand captures the holdings of both semi- and fully passive investors,

it is perfectly inelastic, and shifts with changes in the index.

Let Bi denote the supply for bond i, which we assumed fixed for now. By decomposing

the demand into an active and passive component, we can write the market-clearing condition

for bond i as Bi = Ai
t + T i

t

(
wi
t

)
, where Ai

t denotes the active demand. For any bond i in

fixed supply, an increase in the passive demand implies a decrease in the supply of bonds

available to active investors (i.e., a leftward shift in the effective or residual supply). If this

increase is exogenous, one can use that variation to analyze whether the demand curves for

active investors slope downward. Panel (a) of Figure 1 illustrates this point. If the active

demand is inelastic, an exogenous increase in T i
t (w

i
t) should lead to a higher bond price.

Based on this graphical intuition, one could exploit changes in index weights wi
t to

compute shifts in the passive demand, ∆T i
t ≡ T i

t+1(w
i
t+1)− T i

t (w
i
t), and estimate bond price

responses around those shifts, ∆qit. Using those responses, we can then back out the following

reduced-form (inverse) demand elasticity:

η̂i = (−)
∆qit
∆T i

t

Bi − T i
t

qit
. (1)

Exploiting observed variations in index weights wi
t can still pose challenges. First, changes

in wi
t might be driven by endogenous changes in asset prices or can coincide with large

issuances or redemptions. Second, the estimated price reactions in Equation (1) might

5For instance, passive and semi-active investors do not want to deviate from the composition of the index they
follow to avoid potential tracking error costs.
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Figure 1
Index rebalancing and the demand elasticity

(a) Fixed Expected Payoffs

qi0

qi1

Price

QuantityBi − T i
1 Bi − T i

0

Effective
Supply

Ai
0 = Ai

1

(b) Higher Expected Payoffs

qi0

qi1

Price

QuantityBi − T i
1 Bi − T i

0

Effective
Supply

Ai
0

Ai
1

Note: The figure depicts a decrease in the effective supply driven by an increase in T i
t . Panel (a) considers a case in

which expected payoffs do not change as a consequence of the lower effective supply. Panel (b) shows a case in which
the expected payoffs increase.

capture not only an inelastic demand component but also potential (endogenous) changes in

expected payoffs. Put differently, to directly map Equation (1) into a structural elasticity (ηi),

we would need to assume that the intrinsic value of asset i is unaffected by the ∆T i
t shock.

However, the shock itself might influence the expected payoffs. For example, for long-term

bonds, a larger ∆T i
t may affect next-period payoffs if the shock is persistent. Moreover, the

issuer can react to the shock (for instance, by increasing its supply), which may also affect

the expected payoffs from holding the asset. If investors anticipate these responses, they

should price them.

Panel (b) of Figure 1 illustrates this scenario. If a positive ∆T i
t raises the next-period

expected repayment, investors should be willing to pay a higher price for any given quantity of

the bond, resulting in an upward shift in the active demand. Failing to account for this effect

could lead to the conclusion that the demand curve is steeper (more inelastic) than it actually

is. Conversely, if a positive ∆T i
t lowers the expected repayment, the active demand should

shift downward, potentially causing the demand curve to appear flatter (more elastic) than it

truly is. Since bond prices and payoffs are jointly determined, it is challenging to disentangle

the effects on bond prices due to the downward-sloping demand from those resulting from

changes in expected payoffs.

Given these challenges we proceed in two steps. In Section 3 we detail a novel identification

strategy, based on index rebalancings and their timing, to estimate reduced-form elasticities

for risky sovereign bonds. Then, to formally map these price reactions to structural elasticities,

we formulate in Section 4 a sovereign default model in which bond prices, the bond supply,
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and bond payoffs are endogenous and determined simultaneously.

3 Empirical Analysis

3.1 Identifying Exogenous Shifts in Bond Supply

We exploit end-of-month rebalancings in the J.P. Morgan EMBIGD to identify exogenous

shifts in the supply of bonds available to active investors (i.e., the effective supply). The

EMBIGD tracks the performance of emerging market sovereign and quasi-sovereign U.S.

dollar-denominated bonds issued in international markets.6 Among bond indexes for emerging

economies, the EMBIGD is the most widely used as benchmark and is tracked by funds with

combined assets under management (AUM) of around US$300 billion in 2018 (Appendix

Figure D2).7 Unlike other indices that use a traditional market capitalization-based weighting

scheme, the EMBIGD limits the weights of countries with above-average debt outstanding

(relative to other countries in the index) by including only a fraction of their face amount in

the index (referred to as the “diversified face amount”). The goal of this methodology is to

achieve greater diversification by lowering the index weight of large countries, and we refer to

it as a cap rule.8

Rebalancings in the EMBIGD index occur on the last business day of each month

in the United States and are triggered by bond inclusions and exclusions. J.P. Morgan

announces these updates through a report detailing the updated index composition. Upon

the announcement, passive investors mimicking the index composition need to adjust their

portfolios by buying or selling bonds to match the new index weights.

Following Pandolfi and Williams (2019), we construct a measure of flows implied by

rebalancings (FIR) for each country c on each rebalancing date. The FIR measures the

amount of funds that, on a given rebalancing date, enter or leave a country’s bonds due to the

6The index includes bonds with a maturity of at least 2.5 years and a face amount outstanding of at least
US$500 million. To be classified as an emerging economy, a country’s gross national income (GNI) per capita
must be below an Index Income Ceiling (IIC) for three consecutive years. The IIC is defined by J.P. Morgan
and adjusted every year by the growth rate of the World GNI per capita, Atlas method (current US$), provided
by the World Bank. Bonds in the index must settle internationally and have accessible and verifiable bid
and ask prices. Once included, they can remain in the index until 12 months before maturity. Local law
instruments are not eligible.
7Appendix Figures D3 and D4 show that U.S. dollar-denominated bonds account for the majority of emerging
economies’ government debt issued in international markets.
8In comparison, the J.P. Morgan Emerging Markets Bond Index Global (EMBIG) has the same bond inclusion
criteria as the EMBIGD. The only difference between the EMBIG and the EMBIGD is that while the former
uses a market capitalization weighting scheme, the latter adopts the cap rule to limit the weights of countries
with above-average debt outstanding. In Appendix Figure D1, we compare the country weights for the EMBIG
and EMBIGD.
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rebalancing in the portfolio of passive investors tracking the EMBIGD index. It is defined as:

FIRc,t ≡
∆T̃c,t

qc,t−1Bc,t−1 − wc,t−1Wt−1
. (2)

The ∆T̃c,t term captures the change in passive demand implied by the index rebalancing.

We normalize ∆T̃c,t by the market value of bonds available to active investors, qc,t−1Bc,t−1 −

wc,t−1Wt−1, where W denotes the AUM passively tracking the EMBIGD. We define the

implied change in the passive demand as ∆T̃c,t ≡ (wc,t − wBH
c,t )Wt. The term wc,t is the

benchmark weight for country c at time t and is given by wc,t ≡ qc,tBc,tfc,t
qtIt

, where qc,tBc,t

denotes the market value of bonds from country c at time t, qc,t denotes the price, and Bc,t

denotes the face amount (FA). We define the diversified face amount (DFA) as fc,tBc,t, where

fc,t ≤ 1 is a diversification coefficient. This coefficient captures the share of country c’s face

amount outstanding that is included in the index given the EMBIGD cap rule. As we explain

in the next subsection, the cap rule implies that fc,t < 1 for countries with greater-than-average

outstanding debt.9 The qtIt term denotes the market value of the EMBIGD index, where qt is

the unit price of the index and It is the number of available index units. Lastly, wBH
c,t denotes

a “buy-and-hold weight,” which we define as wBH
c,t ≡ wc,t−1

qc,t/qc,t−1

qt/qt−1
=

qc,tfc,t−1Bc,t−1

qtIt−1
. This

term can be thought of as the weight of country c in the portfolio of an investor mimicking

the EMBIGD absent any bond inclusions or exclusions between t− 1 and t.10

As defined, a 1 p.p. FIR implies a 1% reduction in the supply of the country’s bonds

available to active investors at the time of the rebalancing. The FIR is endogenous and may

be correlated with country fundamentals. First, the FIR is affected by countries’ sovereign

bond issuances. When a country issues new bonds that become part of the index (or redeems

existing ones), its weight changes, leading to changes in the FIR. Second, even for countries

whose Bc,t remains constant, the FIR can be mechanically correlated to present or past bond

price changes.

Our empirical strategy addresses these endogeneity issues in two ways. First, for each

rebalancing event, we restrict our analysis to countries whose amount outstanding of bonds,

Bc,t, remains unchanged relative to the previous month. In other words, we focus only on

countries that do not experience new issuances, bond repurchases, or the removal of bonds

9Appendix A describes the rules that the EMBIGD uses to compute the weights of the instruments included
in the index. In a purely market capitalization-weighted indexes, fc,t = 1 for every country that is part of the
index.
10In the absence of any inclusions or exclusions, we have wc,t = wBH

c,t . If the price of a country’s sovereign
bonds increases more than that of other countries in the index between rebalancing events, the weight of that
country will increase. However, investors do not need to rebalance their portfolios since the ”buy-and-hold
weight” already aligns with the new weight in the index.
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from the index due to maturity on the given month.

Second, we exploit the specific features of the cap rule in the EMBIGD’s weighting scheme.

This rule introduces a weighting coefficient, fc,t, that limits countries’ weight in the index

based on their face amount, and independent of their market value. This characteristic allows

us to exclude variations in the FIR that might be correlated with current or past bond price

changes. To this end, we construct an instrument for the FIR based on a synthetic index in

which country weights are only a function of the diversified face amount, w̃c,t ≡ fc,tBc,t∑
c fc,tBc,t

.

We then compute the relative change in the synthetic index:

∆w̃c,t

w̃c,t−1
=

(
fc,tBc,t∑
c fc,tBc,t

− fc,t−1Bc,t−1∑
c fc,t−1Bc,t−1

)
/

[
fc,t−1Bc,t−1∑
c fc,t−1Bc,t−1

]
. (3)

Given our focus on countries whose debt outstanding in the index remains unchanged

(Bc,t = Bc,t−1), our instrument simplifies to:

Zc,t ≡
(

fc,t∑
c fc,tBc,t

− fc,t−1∑
c fc,t−1Bc,t−1

)
/

[
fc,t−1∑

c fc,t−1Bc,t−1

]
. (4)

For each country c, the Zc,t instrument captures two sources of variation. First, it accounts

for fluctuations across rebalancing events due to changes in the diversified face amount fc,tBc,t

of other countries included in the index (i.e., changes in
∑

c Zc,t). For instance, when a newly

issued bond from Brazil is added to the index, the Zc,t values for all other countries decrease

proportionally. Additionally, the EMBIGD cap rule allows us to exploit variation across

countries within each rebalancing event. As we illustrate in the following subsection, the cap

rule introduces heterogeneity in how the fc,t coefficient reacts to additions or deletions of

other countries.

3.2 The Rebalancings and Cap Rule in Practice

To illustrate how rebalancings and the cap rule operate, we consider an example involving

five countries, c = {A,B,C,D,E}, whose bonds included in the index in month t− 1. For

simplicity, we assume that each of these countries has only one qualifying bond and does not

issue or redeem bonds during month t. Additionally, we assume that another country, F ,

issues an eligible bond during month t, which will be included in the index on the rebalancing

date at the end of that month.

Panel a of Table 1 presents the assumed face amount FAc for each country in the index,

before and after the rebalancing date t. The columns labeled DFAc display the diversified

face amounts (i.e., fcBc) calculated based on the EMBIGD methodology. Each month, J.P.

Morgan computes the “Index Country Average” (ICAt), which is the average country-level

11



Table 1
The cap rule

Panel a. Face amount vs diversified face amount

Country Before Rebalancing After Rebalancing

FAc,t−1 DFAc,t−1 FAc,t DFAc,t

A 1,000 1,000 1,000 1,000

B 2,000 2,000 2,000 2,000

C 3,000 3,000 3,000 3,000

D 7,000 6,429 7,000 6,769

E 12,000 10,000 12,000 11,000

F - - 8,000 7,615

ICA 5,000 5,500

FAmax 12,000 12,000

Panel b. Heterogeneity induced by the cap rule

c w̃c,t−1 =
DFAc,t−1∑
c DFAc,t−1

w̃c,t =
DFAc,t∑
c DFAc,t

Zt =
w̃c,t−w̃c,t−1

w̃c,t−1

A 4.46% 3.19% -28.54%

B 8.92% 6.37% -28.54%

C 13.38% 9.56% -28.54%

D 28.66% 21.57% -24.75%

E 44.59% 35.05% -21.39%

F - 24.26% -

Note: The table illustrates the role of the cap rule. Panel (a) presents the assumed face amounts for each country and
computes the diversified face amount using Equation (5). Panel (b) displays the synthetic index weights derived from
the diversified face amount, with the final column showing the percentage change in these weights, i.e., Z.

face amount of bonds included in the index. Using this average, the diversified face amount

for each country is then computed as follows:

DFAc,t =


ICAt × 2 if FAc,t = FAmax,t

ICAt +
ICAt

FAmaxt−ICAt
(FAc,t − ICAt) if FAc,t > ICAt

FAc,t if FAc,t ≤ ICAt,

(5)

where FAmax refers to the country with the largest face amount (see Appendix A for additional

details). In our example, countries D and E are capped in periods t− 1 and t (since their

face values exceed the ICA), while country F becomes capped in t.

Panel b of Table 1 reports the synthetic weights w̃c,t, which are only a function of the

diversified face amount, and our Z instrument, computed based on Equation (4). Since we

only consider countries with a constant face amount outstanding, changes in w̃, and therefore

our instrument Z, are exclusively driven by country F ’s issuance and are uncorrelated with

price changes.
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From this simple example, one can easily identify the sources of variation that we exploit.

First, the issuance of a new bond by country F and its inclusion in the index reduce the weights

of all other countries. In the absence of the cap rule, a purely market capitalization-based

index would rely solely on this mechanism, leading to a relative decrease in index weights that

is homogeneous across all other countries. However, the cap rule introduces heterogeneity in

the relative changes in the synthetic weights. This variation arises because the diversified face

amount (which is used to calculate w̃) is capped for countries with above-average amounts of

outstanding bonds, and this cap changes after the inclusion of country F .11 By relaxing the

cap for countries with above-average face amounts (D and E), the addition of country F to

the index results in a smaller decrease in the weights of countries with greater outstanding

face amounts. An analogous mechanism would ocurr if the new addition in month t leads to

a decrease in the ICA.

3.3 Estimation Strategy

We exploit the rebalancing-driven shifts in the available supply, along with the timing

of the EMBIGD and the cap rule, to estimate a demand elasticity for sovereign bonds. We

focus on 5-day symmetric windows around each rebalancing date, where we estimate the

average price reactions to exogenous changes in the FIR using our Zc,t instrument.12

We adopt an instrumented difference-in-differences design and estimate the following

specification using two-stage least squares (2SLS):

log(qi,t,h) = θc(i),t + θb(i),t + γ1h∈Post + β(FIRc(i),t × 1h∈Post) +Xi,t + εi,t,h, (6)

where FIRc(i),t are the flows implied by the rebalancing to country c in rebalancing day

t, instrumented by Zc,t in a first stage regression. The term qi,t,h is the price of bond i at

rebalancing event t, h trading days before or after the rebalancing information is released.

For example, h = 1 indicates the first trading day after J.P. Morgan releases the EMBIGD’s

new composition. This release occurs during trading hours on the last business day of each

month, so h = 1 corresponds to that same day. The indicator 1h∈Post equals 1 in the h

days after the rebalancing and 0 in the h days before, θc(i),t are country-month fixed effects,

and θb(i),t are bond characteristics-month fixed effects, including maturity, rating, and bond

11The inclusion of the bond from country F increases the average country face amount outstanding (ICA)
from $5, 000 to $5, 500. The diversified face amounts of countries A, B, and C are unaffected because their face
amounts are below the ICA. However, the increase in the ICA relaxes the cap for initially capped countries
D and E, altering their diversified face amounts outstanding even though their face values remain constant.
12Appendix Figure D5 presents a visual representation of each rebalancing event and the specific days included
in the estimation window.
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type (sovereign or quasi-sovereign). Lastly, Xi,t is a vector of monthly bond controls, which

includes the bond’s face amount and (beginning-of-month) spread. Our coefficient of interest

is β, which captures the effect of shifts in the available supply of a country’s index bonds on

their prices. Specifically, it measures how a 1 p.p. increase in the FIR influences the average

change in the log price of bonds around the rebalancing date.

Our preferred specification replaces the country-month fixed effects, bond characteristics-

month fixed effects, and bond controls with bond-month fixed effects, θi,t. This specification

allows us to exploit variation both within and across rebalancing events. Additionally,

leveraging the cap rule, we present results that focus exclusively on cross-country variation

within an event. To this end, we include in our specification month-1h∈Post fixed effects.

We also estimate a leads-and-lags regression in which the instrumented FIR is interacted

with trading-day dummies around each rebalancing event. This analysis allows us to explore

the dynamic effect of the FIR and test for parallel trends before the rebalancing. We estimate

the following regression via 2SLS:

log(qi,t,h) = θc(i),t + θb(i),t +
∑
h/∈−2

γh1h +
∑
h/∈−2

βh(FIRc(i),t × 1h) +Xi,t + εi,t,h, (7)

where 1h are dummy variables equal to 1 for the h trading day in our [−5, 5] estimation

window and 0 otherwise.

3.4 Data and Summary Statistics

We collect data from various sources to construct our FIR measure. The majority of the

variables used in the analysis are sourced directly from J.P. Morgan. Our sample period

spans from 2016 to 2018. One variable in particular is challenging to measure: the AUM

of funds that passively track the EMBIGD, Wt. While J.P. Morgan provides data on the

amount of assets benchmarked against their indexes, it does not distinguish between passive

and active funds. Even if such data were available, many active funds may passively manage

a significant share of their portfolios, as highlighted by Pavlova and Sikorskaya (2022).

To compute Wt, we start with J.P. Morgan data on assets tracking the EMBIGD, which

we then adjust based on an estimate of the share of passive funds. The estimation process

involves the following steps. We retrieve data from Morningstar on the asset holdings of

funds benchmarked against the EMBIGD and EMBI Global Core for 2016–2017.13,14 For

13The EMBI Global Core uses the same diversification methodology as the EMBIGD to calculate the bond
weights, as described in Appendix A. The criteria for including bonds in the EMBI Global Core is the same as
that for the EMBIGD (and the EMBI Global), except the minimum face amount of the bonds must be US$1
billion and the maturity required to be maintained in the index is of at least one year.
14The sample periods utilized in the paper are determined by data access constraints.
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Table 2
Summary statistics

Variable Mean Std. Dev. 25th Pctl 75th Pctl Min Max
log(Price) 4.64 0.13 4.59 4.68 3.07 5.19
Instrumented FIR (%) -0.15 0.20 -0.32 0.00 -0.66 0.23
Stripped spread (bps) 278 288 128 356 0 4904
EIR duration (%) 6.36 3.92 3.48 7.71 -0.03 19.08
Average life (years) 9.6 8.9 4.0 9.9 1.0 99.8
Face amount (billion U.S. dollars) 1.3 0.8 0.7 1.6 0.5 7.0

Note: This table displays summary statistics for the main variables in the analysis. Stripped Spread is
the difference between a bond yield-to-maturity and the corresponding point on the U.S. Treasury spot
curve, where the value of collateralized flows are “stripped” from the bond. EIR Duration measures the
sensitivity of dirty prices to parallel shifts of the U.S. interest rates, expressed as the percentage change
of dirty price if all U.S. interest rates change by 100 basis points. Average Life is the weighted average
period until principal repayment. Sources: Bloomberg, Datastream, J.P. Morgan Markets, Morningstar
Direct, and authors’ calculations.

each fund, we compute their Passive Share = 100−Active Share, where Active Share is

the measure developed by Cremers and Petajisto (2009).15 We estimate this variable at the

country level, which is the level at which we compute the FIR.16 This allows us to separate,

even for active funds, the fraction of a fund’s portfolio that behaves passively. We then

compute the average Passive Share weighted by each fund’s AUM. With this strategy, we

obtain an estimated passive fund share of 50%.17 We then compute our Wt measure by

adjusting the AUM benchmarked against the EMBIGD using a rescaling factor of 50%.18

We gather data on individual bond prices from Datastream and obtain several bond

characteristics (maturity and duration, among others) directly from J.P. Morgan Markets.

To clean our dataset, we drop extreme values of daily returns, stripped spreads, and Zc,t.
19

We drop stripped spreads below 0 or above 5, 000 basis points as well as observations below

the 5th or above the 95th percentiles in terms of the distribution of Zc,t. The reason for the

latter is that extreme values of Zc,t could be driven by large, pre-announced changes in the

EMBIGD and thus are not appropriate for our identification strategy, which relies on the

assumption that most information is known on the last business day of the month. Finally,

we exclude bond-month observations that experience daily returns below the 1st and above

the 99th percentiles.

15The active share measure evaluates the degree of active management within funds. It quantifies how much
the holdings of a fund differ from the benchmark index it is compared against.
16We calculate the Active Share at the country level by using the country weights in the index and in the
funds’ portfolios rather than bond weights. For the portfolios, we only assign bonds to a given country if they
are included in the EMBIGD. Specifically, a country’s weight in a portfolio is determined by adding together
the weights of all bonds from that country that are included in the EMBIGD.
17Appendix Table D2 provides results using alternative shares of passive funds used to construct the FIR
measure. Although our quantitative estimates change slightly, the qualitative implications remain the same.
18For comparison, we also construct the Active Share at the bond level, and obtain a value-weighted average
of 72%. Cremers and Petajisto (2009) show an average value-weighted Active Share that fluctuates between
55% and 80%.
19Stripped spread is defined in the notes of Table 2.
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Figure 2
Flows implied by rebalancing (FIR)

(a) Relation between FIR and Z (b) Distribution of instrumented FIR values
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Notes: Panel (a) presents a scatter plot of the FIR and the Z instrument. Both variables are residualized based on a
regression with rebalancing-month and country fixed effects. The FIR is computed as described in Equation (2) and Z
is computed according to Equation (4). Panel (b) shows a histogram of the instrumented FIR. The sample period is
2016–2018.

Our final dataset comprises 131,820 bond-time observations for 751 bonds across 68

countries. Table 2 displays summary statistics for our main variables. The bonds in our

sample have an average stripped spread of 278 basis points, an average maturity of 10 years,

and an average face amount of US$1.3 billion.

Panel (a) of Figure 2 presents the results of our first stage. It shows a scatter plot of the

FIR and the Zc,t instrument after both variables have been residualized with rebalancing-

month and country fixed effects. There is a clear positive relationship between the variables,

with an R-squared value of 86%. Panel (b) shows the distribution of our instrumented FIR

measure. The values range from −0.7% to 0.25%, featuring more negative than positive

observations. This is consistent with the fact that the number of bonds included in the

EMBIGD has increased over time. Given that we restrict our analysis to countries with

a constant face amount, the inclusion of bonds from other countries typically reduces the

weight of the sample countries.20

3.5 Results

Table 3 reports the results of our baseline estimation using a five-day window around

each rebalancing event (i.e., h ∈ [−5, 5]).21 Our coefficient of interest, β, is always positive

and statistically significant in the different specifications. The estimate in our preferred

specification, with bond-rebalancing and bond-month fixed effects (column 4), implies that a

20When a bond is added to the index, it generally reduces the weight of other bonds based on their total face
amount. However, in certain situations, it can increase the weight of certain countries by relaxing face amount
caps.
21In Appendix Table D3 we present also the estimates obtained with simple OLS regressions of log bond
prices on the FIR. In this case, the coefficients are slightly lower than in the 2SLS, consistent with a potential
downward bias due to the endogeneity of the FIR measure to price changes around the rebalancing date.
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1 p.p. increase in the FIR increases bond returns by around 0.30 p.p.22

One potential concern with these results is that bonds receiving a larger or smaller FIR

during the rebalancings are on different price trends even before the rebalancing date. To

show that this is not the case, we use the specification with leads and lags described in

Equation (7). The estimated βh coefficients are reported in Figure 3.

Figure 3
Leads and lags coefficients
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Days from rebalancing

Coefficient of FIR (Instrumented) C.I. (95%)

Note: This figure presents leads and lags coefficients from a 2SLS estimation of bond log prices on a set of
trading-day dummies around each rebalancing event, using the same 2SLS procedure as in Table 3. The
estimation includes bond characteristics-month fixed effects (maturity, rating, and bond type). The shaded
area indicates the rebalancing on the month’s last business day, with h = +1 for returns on that day and
h = −1 for returns on the preceding business day. The vertical red lines show a 95% confidence interval for
each horizon. Standard errors are clustered at the country-month level.

22In Appendix Table D4 we estimate an OLS regression with an alternative FIR that holds prices constant,
using previous rebalancing period prices. Results are similar to our main estimates. Additionally, our results
are robust to alternative windows around the rebalancing events (Appendix Table D5) and to excluding
quasi-sovereign bonds from the analysis (Appendix Table D6).
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Table 3
Log price and FIR

Dependent Variable: Log Price

Symmetric window: [-5:+5] Excl. h=-1

FIR 0.006

(0.808)

FIR X Post 0.231** 0.232** 0.231** 0.300** 0.263*** 0.319**

(0.099) (0.100) (0.099) (0.134) (0.098) (0.135)

Post 0.001* 0.001* 0.001* 0.001**

(0.000) (0.000) (0.000) (0.000)

Bond FE Yes Yes No No No No

Month FE Yes No No No No No

Bond Characteristics-Month FE No Yes No No No No

Country-Month FE No Yes No No No No

Bond-Month FE No No Yes Yes Yes Yes

Month-Post FE No No No Yes No Yes

Bond Controls No Yes No No No No

Observations 105,548 105,508 105,548 105,548 84,433 84,433

N. of Bonds 738 738 738 738 738 738

N. of Countries 68 68 68 68 68 68

N. of Clusters 1,576 1,575 1,576 1,576 1,576 1,576

F (FS) 654 1,616 1,666 476 1,670 476

Note: This table presents 2SLS estimates of log bond prices on the FIR measure (Equation
(2)), instrumented by Z (Equation (4)), around rebalancing dates. The first- and second-
stage equations are described in Equation (6). The estimations use a symmetric five-
trading-day window, with Post as an indicator variable (equal to 1 for the five trading
days after rebalancing, and 0 otherwise) in Columns 1-4. Month fixed effects are dummy
variables equal to 1 for each rebalancing month (0 otherwise), and bond characteristics
are fixed effects that interact maturity, ratings, and bond type fixed effects. Maturity
fixed effects are constructed by dividing a bond’s time to maturity into four different
categories: short (less than 5 years), medium (5–10 years), long (10–20 years), and very
long (20+ years). Ratings from each bond are from Moody’s. Bond type differentiates
sovereign from quasi-sovereign bonds. Bond controls indicate whether the estimation
includes the log face amount and log stripped spread of the bond. The last two columns
in the analysis drops the trading day before rebalancing and the trading day h = +5 to
have a four-trading-day symmetrical window around the rebalancing. Standard errors are
clustered at the country-month level, and the sample period is 2016–2018. *, **, and ***
denote statistically significant at the 10%, 5%, and 1% level, respectively.
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On the initial four of the five trading days before the index rebalancing, changes in the

FIR are not associated with systematic differences in bond prices. Instead, in the trading

days after the event, the coefficient increases, becomes positive and significant, and eventually

stabilizes below 0.35 by the end of our estimation window. We do observe a slight anticipation

in the day before the index rebalancing, which is not uncommon in these setups. For example,

this is consistent with the patterns of portfolio rebalancings by different institutional investors

highlighted in Escobar et al. (2021), who show that institutional investors could move in

the day before the actual index rebalancing event. In the last two columns of Table 3, we

show the estimates based on our preferred specification of Equation (6) but after excluding

the trading day before the index rebalancing. This leads to estimates between 0.26 and

0.32, which we take as our baseline since it does not contain any anticipation effect in the

pre-period.

A related concern is the potential for additional anticipation throughout the month.

Between the middle and end of every month, J.P. Morgan releases preliminary estimates

about end-of-month face amounts, market values, and bond weights. While it is conceivable

that active investors traded on this information before the actual index rebalancing date,

our data do not support this behavior. Normally, if a significant number of investors were

anticipating the index rebalancing, we would expect to observe pre-trends in bond prices

before the actual event. However, our analysis reveals no correlation between the FIR and

bond returns in the week leading up to the rebalancing (with the only exception being the

day before the event). Lastly, if part of the rebalancing-driven inflows were to occur before

the event, our FIR measure would overestimate them at the index rebalancing date. This, in

turn, implies that our estimates can be understood as a lower bound.23

The documented effects are heterogeneous across bonds with varying levels of default risk.

To show this heterogeneity, we divide our sample into high- and low-spread bonds, those

above and below the median spread in our sample, respectively. We estimate Equation (6)

for each of these subsamples and report the results in Table 4. The table shows that the

price of high-spread bonds is more sensitive to rebalancing shocks, with a 1 p.p. increase

in the FIR associated with a 0.41 p.p. increase in bond returns. In contrast, for low-spread

23Appendix Table D2 shows how our estimates change as we proportionally decrease the FIR measure (due
to a lower share of passive funds). These results could serve as guidance for what might happen if the FIR
measure were lower due to some investors’ portfolio rebalancings being anticipated.
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Table 4
Log price and FIR: Role of default risk

Dependent Variable: Log Price

High Spread Low Spread

FIR X Post 0.406*** 0.406*** 0.116 0.115

(0.147) (0.146) (0.097) (0.097)

Bond FE Yes No Yes No

Month FE Yes No Yes No

Bond-Month FE No Yes No Yes

Observations 42,169 42,166 42,267 42,267

N. of Bonds 500 500 494 494

N. of Countries 62 62 51 51

N. of Clusters 1,217 1,217 869 869

F (FS) 544 1,889 421 820

Note: This table presents 2SLS estimates of bond log
prices on the FIR measure, instrumented by Z, across
rebalancing dates. The sample is divided into high-
spread bonds in Columns 1 and 2, above the median
stripped spread, and low-spread bonds in Columns 3
and 4, below the median. The sample period and
the 2SLS procedure are identical to those described
in Table 3. The estimation excludes the trading day
before rebalancing and the trading day h = +5 to
have a four-trading-day symmetrical window around
the rebalancing. The coefficients for Post and FIR are
included in the estimation but not reported for brevity.
Standard errors are clustered at the country-month level.
*, **, and *** denote statistically significant at the 10%,
5%, and 1% level, respectively.
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bonds, the effect is smaller (around 0.11 p.p.) and not statistically significant.24 Overall,

these findings suggest that investors demand a premium as compensation for holding risky

bonds, that is, an inconvenience yield.

We can directly map the estimated bond price reactions to a reduced-form demand

elasticity. Based on our FIR measure, we can rewrite Equation (1) as η̂ = (−)
∆log(qit)
FIRc,t

, which

is precisely what the β coefficient in Equation (6) captures. Based on the estimates in Table 3

(last columns), the inverse demand elasticity is around −0.3, implying a demand elasticity of

−3. Our inverse demand elasticity estimate is higher (in magnitude) than those for sovereign

bonds issued in advanced economies, but smaller relative to other asset classes, such as

equities. In Appendix Figure D6, we compare our estimates with other studies.

4 A Sovereign Debt Model with Inelastic Investors

We next formulate a quantitative sovereign debt model to study the impact of a downward-

sloping demand on a government’s supply of risky bonds. The model features a risk-averse

government that lacks commitment and issues long-term debt in international debt markets.

We introduce a rich demand structure, allowing us to capture a downward-sloping demand

for government bonds that we discipline based on our empirical estimates.

4.1 Model Setup

We consider a small open economy with incomplete markets. Output y is exogenous and

follows a continuous Markov process with a transition function fy (yt+1 | yt). Preferences of

the representative consumer are given by

E0

∞∑
t=0

βtu (ct) , (8)

where β is the discount factor, c denotes consumption, and the function u (.) is strictly

increasing and concave.

An infinite-lived, risk-averse government issues long-term bonds in international markets.

Let Bt−1 denote the beginning-of-period stock of government debt. The government lacks

commitment and can default on its debt. Each unit of B matures in the next period with

probability λ. If a bond does not mature (and the government does not default), it pays a

coupon ν. Let dt = {0, 1} denote the default policy, where d = 1 indicates a default. Default

24Appendix Table D7 divides bonds into three groups according to their spreads. We find that bond prices
are positively associated with the FIR for both high (above 302 basis points) and medium (between 158 and
302 basis points) spread bonds. Instead, for low spread bonds (below 158 basis points), the relationship is
statistically insignificant. Additionally, the estimated coefficient increases with the risk profile of the bonds.
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leads to a temporary exclusion from international debt markets and an exogenous output

loss, ϕ(yt). The government is benevolent and chooses {dt, Bt} to maximize Equation (8),

subject to the economy’s resource constraint.

International markets are competitive, and investors discount payoffs at the risk-free rate.

These markets are populated by a large number of heterogeneous investors (J) who differ in

how they allocate their funds across bonds. We introduce a downward-sloping demand by

assuming that each investor j has a mandate or rule that specifies how they should allocate

their funds across the N bonds (each issued by a different country). A fraction of these

investors are passive and track the composition of a benchmark bond index I, of which the

government’s bonds are part of it.

4.2 Inelastic Investors

Let j = {1, ..., J} denote the investor. Let i = {1, ..., N} denote the set of bonds in

which investors can invest and let wt =
{
w1
t , ..., w

N
t

}
denote the vector of time-varying index

weights for each constituent bond of index I. We define xijt =
qitB

i
jt

Wjt
as the share of wealth

that investor j invests in bond i at time t. The term qit denotes the unit price of bond i, Bi
j,t

denotes the holdings of investor j in bond i, and Wj,t denotes their wealth. Following Gabaix

and Koijen (2021), the share xijt is given by the following exogenous mandate:

xijt = θj

(
ξije

Λj π̂i,t(rit+1)
)
+ (1− θj)w

i
t, (9)

where θj parameterizes the degree of activeness of investor j. Purely passive investors can be

characterized by θj = 0, indicating that their portfolio simply replicates the benchmark index

I. Conversely, active and semi-active investors are those with θj ∈ (0, 1]. Within their active

allocation, investors apportion a fixed fraction ξij of their wealth to bond i and a varying

component determined by Λj π̂i,t
(
rit+1

)
, where Λj > 0 parameterizes their demand elasticity

and π̂i,t (.) is an arbitrary function of the next-period excess return of bond i, rit+1. For

instance, if π̂i,t
(
rit+1

)
= Et

(
rit+1

)
, investors allocate a higher share of their wealth to bonds

with higher expected excess returns.

The reduced-form mandate in Equation (9) allows us to introduce an aggregate demand

elasticity for bond i that can be parameterized by Λ ≡ {Λ1, ..,ΛJ}. While this mandate

can have different microfoundations (as shown in Appendix B), we take it as given for our

analysis. Our goal is not to explain the reasons behind the inelastic demand for risky bonds

but rather to examine its implications. After aggregating all the individual demands, the
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market-clearing condition can be expressed as:

qitB
i
t = Ãi

t + T̃ i
t (w

i
t), (10)

where Bi
t is the end-of-period bond supply, and Ãi

t ≡
∑

j Wj,tθj

(
ξije

Λj π̂i,t

)
and T̃ i

t (w
i
t) ≡∑

j Wj,t (1− θj)w
i
t denote the market-value active and passive demands, respectively. The

passive demand, T̃ i
t (w

i
t), reflects the portion of investors’ holdings aimed at replicating the

index composition. It captures the holdings of both semi- and fully- passive investors. We

write T̃ i
t (w

i
t) as a function of wi

t to emphasize its dependence on the index weights.

We now put more structure behind the investor demand, allowing us to derive a closed-

form solution for the price. We assume that π̂i,t(r
i
t+1) =

Et(rit+1)
Vt(rit+1)

so that the active demand

is a function of the bond’s expected excess return and its variance (the Sharpe ratio).25 We

define Ri
t+1 as the next-period repayment per unit of the bond so that rit+1 ≡

Ri
t+1

qit
−rf , where

rf denotes the risk-free rate. Based on these definitions and the market-clearing condition in

Equation (10), the equilibrium bond price is given by

qit =
Et

(
Ri

t+1

)
rf

Ψi
t. (11)

The term
Et(Ri

t+1)
rf

captures the price under perfectly elastic investors, which is only a function

of the expected next-period repayment. On the other hand, Ψi
t captures the downward-sloping

component of demand, which is given by

Ψi
t ≡ 1− κit (Λ)

Vt

(
Ri

t+1

)
Et

(
Ri

t+1

) (
Bi

t − T i
t − Āi

t

)
. (12)

The term κit (Λ) ≡ 1∑
j ΛjWj,tθjξij

characterizes the elasticity of the active demand for bond i.

The Bi
t − T i

t component is the effective or residual supply, while Āi
t captures the inelastic

portion of the active demand, which is determined by the fixed component of investors’

mandates, ξij (see Appendix B for the details and derivations). Notice that when κit (Λ) = 0,

the active demand is perfectly elastic and the bond’s price only depends on its expected

repayment. When κit (Λ) > 0, the demand is inelastic and differs across bonds with different

repayment variances (i.e., default risk), which is consistent with our empirical findings. We

view the Ψi
t term as capturing an inconvenience yield, that is, a premium demanded by

investors as compensation for holding the bond, in excess of its default risk.

25This is a similar specification to the one in Gabaix and Koijen (2021), which is a function of expected excess
returns and a shock to tastes or perceptions of risk.
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4.3 Government Problem: Recursive Formulation

We focus on a Recursive Markov Equilibrium (RME) and represent the infinite horizon

decision problem of the government as a recursive dynamic programming problem (see

Appendix C.2 for the equilibrium definition).

We introduce the pricing equations derived in the previous subsection into the problem of

the sovereign government, who issues a risky bond that is part of the index I. For simplicity,

we will omit the i subindex in what follows. In order to have a recursive formulation of the

problem, we assume that the passive demand is given by T ′ = T (τ,B′) where B′ denotes the

end-of-period stock of government bonds and τ is a (time-varying) index weight. We assume

that τ is exogenous and follows a continuous Markov process with a transition function

fτ (τ
′ | τ). Given an end-of-period bond supply B′, the market-clearing condition can we

written as B′ = A′ (.) + T (τ,B′), where A′(.) denotes the (end-of-period) active demand.

Under these assumptions, the state space can be summarized by the n-tuple (h,B, s),

where h captures the government’s current default status, B is the beginning-of-period stock

of debt, and s = (y, τ) are the exogenous states. For a given default status h and choice of

B′, the resource constraint of the economy can be written as

c(h = 0, B, y, τ ;B′) = y + q
(
y, τ, B′) (B′ − (1− λ)B

)
− (λ+ (1− λ)ν)B, (13)

c(h = 1, y) = y − ϕj(y),

where q (y, τ, B′) denotes the price of a unit of debt, B′ − (1− λ)B are new bond issuances,

and (λ+ (1− λ)ν)B are current debt services.

If the government is not in default, its value function is given by

V (y, τ, B) = Maxd={0,1}

{
V r (y, τ, B) , V d (y)

}
, (14)

where V r(.) denotes the value function in case of repayment and V d(.) denotes the default

value. If the government chooses to repay, its value function is given by the following Bellman

equation:

V r (y, τ, B) = MaxB′ u(c) + β Es′|sV
(
y′, τ ′, B′) , (15)

subject to c = y + q(y, τ, B′)
(
B′ − (1− λ)B

)
− (λ+ (1− λ)ν)B.

While in default, the country is excluded from debt markets and cannot issue new debt.

The government exits a default with probability θ, with no recovery value. Additionally, we

assume that demand from passive investors is zero during the default period. Under these
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assumptions, the value function in case of default is given by

V d (y) = u (y − ϕ(y)) + β Es′|s

[
θV

(
y′, τ ′, 0

)
+ (1− θ)V d

(
y′
)]

. (16)

Based on the analysis in Section 4.2, given an exogenous state {y, τ} we can write the

bond price function that the government faces as a function of B′ as follows:

q
(
y, τ, B′) = β⋆ Es′|s

[
R

(
y′, τ ′, B′)] Ψ

(
y, τ, B′) , (17)

where β⋆ ≡ 1/rf is the lenders’ discount factor, R′(.) ≡ R (y′, τ ′, B′) denotes the next-period

repayment function, and Ψ(y, τ, B′) captures the downward-sloping component of the active

demand. The next-period repayment function is given by

R
(
y′, τ ′, B′) = [

1− d
(
y′, τ ′, B′)] [λ+ (1− λ)

(
ν + q(y′, τ ′, B′′)

)]
, (18)

where d(y′, τ ′, B′) is the next-period default choice and q(y′, τ ′, B′′) denotes the next-period

bond price, which is a function of next-period exogenous states, {y′, τ ′}, and the next-period

debt, B′′ ≡ B′ (y′, τ ′, B′).

From Equations (17) and (18), it is clear that the bond price decreases with the expected

default probability. Specifically, a larger B′ (weakly) increases the default risk (conditional

on a level of output), and thus q(y, τ, B′) (weakly) decreases in B′. The Ψ (y, τ, B′) term

introduces another mechanism for the bond price to be decreasing in B′: the downward-sloping

demand of active investors.

When choosing its optimal debt policy, the government internalizes the effects of changes

in B′ on the bond price q(y, τ, B′), accounting for both the impact on expected repayment

and the downward-sloping demand component. Let ε ≡ ∂ log q(.)
∂ logB′ denote the (inverse) supply

elasticity, which can be expressed as

ϵ =
∂ logEs′|sR′ (.)

∂ logB′ +
∂ logΨ (.)

∂ logB′ . (19)

The first term on the right-hand side captures the elasticity of the expected repayment

function with respect to the bond supply. This elasticity is (weakly) negative because a larger

B′ increases default risk and reduces the expected bond payoff. The second term captures

the additional decline in the bond price resulting from the downward-sloping demand. As we

show in our quantitative analysis, this mechanism limits the government’s debt and acts as a

disciplining device.
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4.4 Secondary Markets and Link with Empirical Analysis

We have introduced a passive demand in the model in order to compute the same

reduced-form elasticity of the empirical analysis in Section 3. Notice, however, that our

empirical elasticity is based on high-frequency (daily) data. Specifically, we estimated this

elasticity within a short window around the rebalancing of the I index. To address this

frequency disconnect, we introduce secondary markets into our model to better capture the

high-frequency nature of our empirical analysis. In particular, we consider two instances of

trading in secondary markets within a period. The timing assumption is as follows:

1. The endowment y is realized. The initial states are: {y, τ, B}

2. The government chooses d (y, τ, B) and B′ (y, τ, B).

3. The primary and secondary market open. Let qSM,0 (y, τ, B′) denote the opening price.

4. The next-period index weights τ ′ are realized. Bond prices are updated.

5. The secondary market closes. Let qSM,1 (y, τ ′, B′) denote the closing price.

With this simple extension, we can compute “high-frequency” bond price reactions to

exogenous changes in index weights, similar to what we did in our empirical setup (i.e., price

changes during a rebalancing event). The only difference between qSM,1 and qSM,0 arises

from the update of τ , since both the endowment and the stock of debt remain fixed while the

secondary market is open. In Appendix C, we describe in detail the pricing functions under

this extension. What it is important to note is that, absent secondary markets, the timing

assumption is exactly the same as in the baseline model. This implies that the proposed

extension nests our baseline model.

Let ∆T ′ ≡ T (τ ′, B′)− T (τ,B′) denote an exogenous shift in the passive demand implied

by a change in index weights. Given ∆T ′, and by means of simulations, we can compute the

same reduced-form elasticity η̂ of our empirical analysis:

η̂ = (−)
∆q

∆T ′
B′ − T (τ,B′)

qSM,0 (y, τ, B′)
, (20)

where ∆q ≡ qSM,1 (y, τ ′, B′)− qSM,0 (y, τ, B′). We can then use the model to decompose η̂

into a structural demand elasticity η and changes in expected repayment α. That is,

η̂ = (−)
∆Ψ

∆T
B′ − T (τ,B′)

ΨSM,0 (y, τ, B′)︸ ︷︷ ︸
≡ η

+(−)
∆ER′

∆T ′
B′ − T (τ,B′)

Ey′,τ ′|y,τR (y′, τ ′, B′)︸ ︷︷ ︸
≡α

, (21)

where ∆Ψ ≡ ΨSM,1 (y, τ ′, B′)−ΨSM,0 (y, τ, B′) is the change in the bond price driven by the

inelastic demand component before and after the new index weight τ ′ is realized. Similarly,
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∆ER′ ≡ Ey′|yR (y′, τ ′, B′)−Ey′,τ ′|y,τR (y′, τ ′, B′) captures the change in the bond’s expected

repayment once the new τ ′ is realized.

Two mechanisms underlying the previous decomposition are worth emphasizing. First,

if the τ process is persistent, an increase in τ today influences future Ψ (.) terms and,

consequently, future bond prices and expected payoffs (as shown in Equations 17 and 18).

Thus, even if B′ is fixed and default risk remains constant, changes in τ affect the bond price

not only through the inelastic demand component, Ψ(.), but also through future payoffs.

Second, through its effects on (current and future) bond prices, changes in τ affect the

government’s value function V r(.) (Equation 15) and thus influence its debt and default

policies, B′(.) and d(.), respectively. Changes in these policies, in turn, impact expected

payoffs, the Ψ(.) term, and the bond price (from Equations 17 and 18). This interconnectedness

highlights the need for a quantitative analysis to disentangle all the forces at play.

5 Quantitative Analysis

5.1 Calibration

We calibrate the model at a quarterly frequency using data on Argentina, a benchmark

case commonly studied in the sovereign debt literature. The calibration follows a two-step

procedure. We first fix a subset of parameters to standard values in the literature or based on

historical Argentine data. We then internally calibrate the remaining parameters to match

relevant moments for Argentine spreads and other business cycle statistics.

In terms of functional forms and stochastic processes, we assume that the government

has CRRA preferences: u (c) = c1−γ

1−γ , where γ denotes the risk aversion. Output follows an

AR(1) process given by log (y′) = ρy log (y) + ϵ′y, with ϵ′y ∼ N(0, σy). If the government

defaults, output costs are governed by a quadratic loss function ϕ (y) = max
{
d0y + d1y

2, 0
}
.

For d0 < 0 and d1 > 0, the output cost is zero whenever 0 ≤ y ≤ −d0
d1

and rises more

than proportionally with y when y > −d0
d1
. This loss function is identical to the one used

in Chatterjee and Eyigungor (2012) and allows us to closely match the sovereign spreads

observed in the data. As for the demand of passive investors, we assume that it is proportional

to the (end-of-period) amount of bonds outstanding. Specifically, T ′ = T (τ,B′) = τ × B′.

We let τ follow an AR(1) process given by log(τ ′) = (1− ρτ ) log(τ
⋆) + ρτ log(τ) + ϵ′τ , where

ϵ′τ ∼ N (0, στ ).

Based on the analysis in Section 4.2, we consider the following functional form for the
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Table 5
Calibration of the model

Panel a: Fixed Parameters Panel b: Calibrated Parameters

Param. Description Value Param. Description Value

γ Risk aversion 2.00 β Discount rate 0.951
r Risk-free interest rate 0.01 d̄0 Default cost—level −0.264
λ Debt maturity 0.05 d̄1 Default cost—curvature 0.31
z Debt services 0.03 κ Slope parameter 72.0
θ Reentry probability 0.0385 Ā Active investors demand 0.455
ρy Output, autocorrelation 0.93
σy Output, shock volatility 0.02
τ⋆ Share of passive demand 0.123
ρτ FIR, autocorrelation 0.66
στ FIR, shock volatility 0.02

downward-slopping Ψ(.) term:

Ψ
(
y, τ, B′) = exp

{
−κ

Vs′|s (R′(.))

Es′|s (R′(.))
×
(
B′ − T ′ − Ā

)}
, (22)

where κ ≥ 0 characterizes the elasticity of the demand function and Ā denotes the average

holdings of active investors (as determined by the fixed component of their mandates, ξij).

For tractability, we assume time-invariant values for both κ and Ā.26 This specification

introduces a wedge in the price of risky bonds (i.e., those with Vs′|s (R′(.)) > 0) and allows

us to capture two key features of our empirical analysis: a downward-sloping demand for

active investors and a demand elasticity that increases (in magnitude) with default risk.

Table 5 lists the calibrated parameters. For the subset of fixed parameters (Panel a), we

set γ = 2, which is a standard value for risk aversion in the literature. We also set a quarterly

risk-free rate of rf = 0.01, in line with the average real risk-free rate observed in the United

States. The probability of re-entering international markets is set to θ = 0.0385, implying

an average exclusion duration of 6.5 years. We set λ = 0.05 to target a debt maturity of

5 years and ν = 0.03 to match Argentina’s average debt services. The parameters for the

endowment process, ρy and σy, are based on log-linearly detrended quarterly real GDP data

for Argentina. All these parameters are taken from Morelli and Moretti (2023). Last, we set

τ⋆ to match the average share of Argentina’s external debt tracked by passive investors and

calibrate ρτ and στ to match the persistence and volatility of our FIR measure.

We internally calibrate the remaining parameters (Table 5, Panel b). We jointly calibrate

the default cost parameters {d0, d1}, together with the government’s discount factor β, to

target Argentina’s average ratio of (external) debt to GDP, average spread, and volatility

26As shown in Section 4.2, these terms could be, in principle, time-varying functions. We also use an exponential
specification purely for computational reasons: to avoid having a negative price in some states.
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Table 6
Targeted moments

Target Description Data Model

E[SP ] Bond spreads 472bp 476bp
σ(SP ) Volatility of spreads 200bp 135bp
E[B/Y ] Debt to output 55% 54%
E[Ψ] Inconvenience yield 1.0 1.002
η̂ Reduced-form elasticity −0.3 −0.29

Note: The table reports the moments targeted in the calibration and their model counterpart.

Figure 4
Default set and bond prices

(a) Default set (b) Bond price

Note: Panel (a) shows the default policy for different combinations of B′ and y. The black area depicts combinations of
B′ and y such that default probability is zero. Lighter colors indicate a higher default probability. In Panel (b), the
solid lines show the bond pricing kernel q(y, τ, B′) for different values of B′ and for two values of output. The dashed
lines show the bond price under a perfectly elastic demand, taking as given the same bond and repayment policies as in
our baseline model (i.e., q(.)/Ψ(.)).

of spreads.27 Additionally, we calibrate κ to match the estimated (inverse) reduced-form

demand elasticity, η̂. Last, we set Ā to match the average holdings of active investors. That

is, Ā = B̄ − T̄ , where B̄ denotes the average debt stock and T̄ denotes passive investors’

average holdings. Given Equation (22), this is equivalent to targeting an average Ψ(.) of one,

which implies that the (in)convenience yield is zero on average. The introduction of Ψ(.) thus

only affects the sensitivity of the pricing kernel to changes in B′ around the {B̄, T̄ , Ā} point.

Figure 4 depicts the default set and the bond price function q(.) for different values of B′

and y. Panel (a) shows that the government defaults in states with high debt and low output.

As a consequence, the bond price is decreasing in B′ and increasing in y (Panel (b)). The

dashed lines in Panel (b) depict bond prices under a counterfactual in which we maintain

27Annualized spreads are computed as SP =

(
1+i(y,τ,B′)

1+rf

)4

− 1, where i (y, τ, B′) is the internal quarterly

return rate, which is the value of i(.) that solves q (y, τ, B′) = [λ+(1−λ)ν]
λ+i(y,τ,B′) .
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Figure 5
Disentangling the demand elasticity

(a) As a function of B′ (b) As a function of spreads

Note: The figure shows the reduced-form inverse demand elasticity η̂ (orange lines) and the structural one η (blue lines).
The vertical differences between the two lines (represented by the black lines) capture the endogenous changes in bonds’
expected repayment, α. Panel (a) shows the results as a function of B′, while Panel (b) shows the results as a function
of annualized bond spreads.

the baseline B′(.) policy but assume that demand is perfectly elastic (i.e., they show the

q(.)/Ψ(.) function). At lower B′ levels, where default risk is minimal, bond prices remain

largely unaffected by the downward-sloping demand. However, as B′ increases, heightened

repayment volatility decreases Ψ(.), subsequently lowering the bond price q(.).

5.2 Decomposing the Reduced-form Demand Elasticity

We formally disentangle the different channels through which changes in T affect bond

prices. As shown in Equation (21), index rebalancing affects bond prices through two

mechanisms: (i) the (inverse) structural demand elasticity of active investors, η, and (ii)

changes in expected repayment, α. Using the calibrated model, we can isolate the effects

driven by changes in expected repayment to properly identify the structural demand elasticity.

Figure 5 decomposes the channels outlined in Equation (21). The black line shows the

reduced-form (inverse) demand elasticity η̂, while the blue line depicts the model-implied

structural elasticity, η. The vertical differences between these two curves (red lines) indicate

the portion of the reduced-form elasticity attributable to endogenous changes in the repayment

function, α. We find that the magnitude of η̂ is always higher than that of η. The difference

can be substantial, particularly for larger values of B′ and for higher bond spreads. The first

column of Table 5 shows the unconditional average for both the reduced-form elasticity, η̂,

and the structural elasticity, η. On average, the structural elasticity accounts for less than

two-thirds of the reduced-form elasticity.
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Table 7
Persistence of shocks and demand elasticity

Moment Baseline Lower persistence Low persistence Higher persistence

Reduced-form η̂ -0.29 -0.24 -0.26 -0.32
Structural η -0.17 -0.18 -0.17 -0.17
Bias, 1− η/η̂ 40% 25% 34% 48%

Note: The table compares the reduced-form inverse demand elasticity η̂ with the structural one η. The “Baseline”
column shows the elasticities under our baseline calibration. In the “Lower persistence” case, we decrease the
persistence of the {τ} process by setting ρτ = 0.25. The “Low persistence” column is based on ρτ = 0.50. The
“Higher persistence” column shows the results for ρτ = 0.80.

The magnitudes of the documented biases critically depend on the persistence of the τ

process. The last two columns of Table 7 compare the reduced-form and structural elasticities

for different persistence values of the {τ} process. When the process is more (less) persistent,

the structural elasticity accounts for a smaller (larger) share of the reduced-form elasticity.

In other words, the more persistent the shock, the smaller the total price response attributed

to the inelastic component of investors’ demand. In Appendix C.4, we analyze these biases in

more detail.

Overall, our analysis highlights the importance of accounting for issuers’ endogenous

responses to an exogenous (supply-shifting) shock and the resulting changes in assets’ expected

repayment. Neglecting these factors can introduce significant biases into the estimated demand

elasticity, particularly if the shock is persistent. As argued in Section 3, our FIR measure

is inherently more temporary than other supply-shifting instruments used in the literature,

such as index additions or deletions. However, even in this case, the bias can represent over

one-third of the reduced-form elasticity.

5.3 Implications of a Downward-sloping Demand

As illustrated in Equation (19), in determining its optimal debt policy, the government

internalizes not only the effects of a higher B′ on q(.) through changes in its default probability

but also the effects through the inelastic demand. This section quantifies the implications of

a downward-sloping demand on bond prices, default risk, and government policies. To this

end, we compare our downward-sloping demand model with an alternative scenario where

investors are perfectly elastic.

Table 8 reports a set of targeted and untargeted moments for our baseline model and for

an alternative case with a perfectly elastic demand (κ = 0). All the other model parameters

remain the same. Despite similar levels of debt, we find that the default frequency and

average spreads are lower in the case of inelastic demand compared to the perfectly elastic
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Table 8
Comparison with perfectly elastic case: Unconditional moments

Moment Description Baseline Perfectly elastic

E (SP ) Bond spreads 476bp 910bp
σ (SP ) Volatility of spreads 135bp 466bp
E (B/y) Debt to output 54% 52%
E (d) Default frequency 3.84% 4.74%
σ(B)/σ(y) Standard deviation of debt, relative to output 1.06 1.84
ρ (∆B, y) Correlation between issuances and output 0.37 0.51
ρ (SP, y) Correlation between spreads and output -0.68 -0.51

Note: The table compares a set of moments between our baseline model with inelastic investors and a counterfactual
scenario in which investors are perfectly elastic (κ = 0).

scenario.

Two factors explain the lower default rate and bond spreads. First, the government’s debt

policy is directly influenced by the downward-sloping demand. Panel (a) of Figure 6 shows

the optimal debt policy B′(y, τ, B) in our baseline model and in the perfectly elastic case.

For large values of B (in states where V (R′(.)) is high), an additional unit of B′ reduces

the bond price q(.) due to both higher default risk and investors’ inelastic behavior. As a

result, the government does not find it optimal to issue large amounts of debt because the

associated costs are too high. An inelastic demand thus imposes a limit to the maximum

amount of debt that a government is willing to issue.

Second, these changes in the optimal bond policy have important effects on the pricing of

bonds (Figure 6, Panel (b)). For small values of B′ (low default risk), q(.) is actually higher

than in the perfectly elastic case. As shown in Panel (c), this larger bond price is not driven

by a convenience yield; given our calibration, Ψ(.) is typically smaller than one. Instead, the

higher bond price results from a lower default risk (Panel (d)), which is a direct consequence

of the government’s reduced incentives to issue large amounts of B′.

Overall, an inelastic demand diminishes a government’s incentives to issue additional

units of debt, acting as a disciplining device that reduces default risk and increases bond

prices.

How does an inelastic demand affect the optimal government response to shocks? It is

well-known that in models with limited commitment and endogenous default, the optimal

bond policy is pro-cyclical (Arellano, 2008). While the government would like to issue more

debt in “bad” times (i.e., when output is low) to smooth consumption, the resulting increase

in spreads—due to higher default risk— leads the government to actually reduce its debt. On

the other hand, in “good” times (when output is high and default risk is low), the government
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Figure 6
Comparison with perfectly elastic case: Policy functions and prices

(a) Bond policy (b) Bond price

(c) Ψ(y, τ, B′) (d) Default risk, annualized

Note: The top panel presents bond policies and prices as a function of B and B′, respectively. We evaluate all the
functions at the mean value for output, y. Blue solid lines show the results for our baseline model with inelastic investors
and the orange dashed lines show the results in an alternative model in which investors are perfectly elastic. The bottom
panel depicts the Ψ(y, τ, B′) function and the annualized default risk.

benefits from cheaper credit and increases its debt issuance. This standard mechanism in

sovereign debt models explains the well-known excess volatility of consumption in emerging

markets.

We find that this pro-cyclicality is dampened in the presence of inelastic investors. In

Figure 7, we analyze the impulse responses to endowment shocks. For a positive shock

(Panel a), the figure shows a greater increase in debt issuance when investors are perfectly

elastic. Under a perfectly elastic demand, the government can take full advantage of the

lower financing costs associated with the implied decrease in default risk. Under inelastic

demand, however, the government response is muted, as it internalizes that, despite the

cheaper financing, an additional unit of debt reduces bond prices due to the downward-sloping

demand. In this sense, the inelasticity imposes a cost: it prevents the government from issuing

more during periods when financing is cheap, which lowers the expansion in consumption. For

a negative endowment shock (Panel b), a similar pattern emerges. A lower output increases
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borrowing costs, prompting the government to decrease its debt. However, under inelastic

demand, reducing the stock of debt decreases the inconvenience yield demanded by investors,

which lowers spreads; hence, the contraction in debt is less pronounced.

Figure 7
Impulse responses to an output shock

(a) Positive output shock

Output Debt Consumption rate

(b) Negative output shock

Output Debt Consumption rate

Note: Figure shows the impulse response dynamics to a positive (panel a) and negative (panel b) endowment shock.
Blue lines show the dynamics for our baseline model with inelastic investors. The orange dashed lines show the perfectly
elastic case.

Figure 8 compares the unconditional distribution of debt-to-output ratios between our

baseline model and the perfectly elastic case. Under an inelastic demand, this distribution is

significantly less dispersed (Panel a). In fact, the standard deviation of debt is about 30%

smaller under inelastic investors (as shown in Table 8). In line with the impulse response

dynamics, the debt-to-output ratio exhibits a smaller unconditional correlation with output

when investors are inelastic (Panel b). This, in turn, results in a larger correlation (in

magnitude) between spreads and output (Table 8).

We conclude our analysis by examining the welfare implications of an inelastic demand.

We define the certainty equivalent consumption (CEC) as the proportional increase in

consumption under the perfectly elastic case, such that the household is indifferent between
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Figure 8
Stock of sovereign debt under inelastic investors

(a) Distribution of B/y (b) Relation with output

Note: Panel (a) shows the model simulated distributions for debt-to-output. Panel (b) shows a binscatter plot between
the debt-to-output ratio and output. Blue bars and dots are for the baseline model with inelastic investors. Orange
bars and dots are for an alternative model in which investors are perfectly elastic.

Figure 9
Inelastic investors: Welfare analysis

(a) CEC as a function of B (b) CEC based on model simulations

Note: The figure shows the certainty equivalent consumption (CEC) defined as the proportional increase in consumption
under the perfectly elastic counterfactual such that the household is indifferent between that case and the inelastic one.
Panel (a) shows the CEC across different levels of B. The blue dots in Panel (b) show the the relation between the
CEC and debt-to-output ratio B/y, based on model simulations. The gray bars show the histogram for the distribution
of B/y.

this scenario and the inelastic one.28 Figure 9 displays the results. We find a positive CEC,

indicating that the disciplining device is sufficiently strong for the household to prefer a world

with inelastic investors. The CEC decreases as the stock of debt increases due to the higher

inconvenience yield demanded by investors (as shown in Figure 6).

28The CEC is implicitly defined as the value of x̃ such that
∑∞

t=0 β
tEtu(ct) =

∑∞
t=0 β

tEtu ((1 + x̃) c̃t), where
ct denotes the consumption under an inelastic demand and c̃t denotes the consumption under a perfectly

elastic case. By exploiting the power utility function, the CEC is given by: x̃ =
[
V (y,τ,B)

Ṽ (y,τ,B)

] 1
1−γ − 1, where Ṽ (.)

is the government’s value function under the perfectly elastic case.
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6 Conclusion

In this paper, we present evidence of downward-sloping demand curves in risky sovereign

debt markets and analyze their implications for the optimal supply of sovereign bonds. Our

approach combines high-frequency bond-level price reactions to well-identified shocks with a

structural model that features endogenous debt issuance and default risk. This methodology

allows us to isolate endogenous changes in expected bond payoffs behind the estimated price

reactions and to back out a structural demand elasticity. Empirically, we find that a 1 p.p.

reduction in the effective bond supply leads to a 30 basis point increase in bond prices. Our

structural model reveals that over one-third of this response is attributable to endogenous

changes in the expected repayment of bonds. We show that an inelastic demand can have

important macroeconomic effects. In particular, we find that the inelastic demand influences

and shapes government policies regarding optimal debt issuance and default. By diminishing

the government’s incentives to issue additional units of debt, an inelastic demand acts as a

disciplining device that reduces both default risk and borrowing costs. Moreover, we find

that the pro-cyclicality of the debt policy is dampened in the presence of inelastic investors.

Our results highlight the importance of considering issuers’ endogenous responses and

the resulting changes in expected asset payoffs. Failing to account for these responses can

introduce significant biases when estimating demand elasticities, particularly for risky assets.

Our paper can lead to further research along several dimensions. For instance, given the

model predictions, it would be interesting to empirically study the impact of inelastic demand

on government debt issuance. More importantly, our framework can be extended to other

assets and markets, notably equity and corporate bonds. The endogenous responses that we

emphasize in this paper can be applied to other issuers of risky assets, which we leave for

future research.
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Supplemental Appendix for Inelastic Demand Meets

Optimal Supply of Risky Sovereign Bonds

A Diversification Methodology

Relative to a market capitalization-weighted index, the EMBIGD employs a diversification

methodology to produce a more even distribution of country weights. This ensures that

countries with large market capitalization do not dominate the index. To achieve this goal,

the methodology restricts the weights of countries with above-average debt levels by including

only a portion of their outstanding debt.

The methodology is anchored on the average country face amount in the index, called

Index Country Average (ICA), and defined as:

ICAt =

C∑
c=1

FAc,t

C
,

where FAc,t denotes country c’s bond face amount included in the index at time t, and C

denotes the number of countries in the index.

The diversified face amount for any country in the index is derived according to the

following rule:

1. The maximum threshold is determined by the country with the largest face amount

(FAmax), capped at twice the ICA (ICA× 2).

2. If a country’s face amount is between the ICA and FAmax, its diversified face amount

is linearly interpolated.

3. If a county’s face amount is below the ICA, the entire face amount is eligible for

inclusion.

The diversified country face amount (DFAc,t) is calculated as follows:

DFAc,t =


ICAt × 2 if FAc,t = FAmax,t

ICAt +
ICAt

FAmaxt−ICAt
(FAc,t − ICAt) if FAc,t > ICAt

FAc,t if FAc,t ≤ ICAt

(A1)

For countries with a restricted face amount in the EMBIGD, the proportional decrease

applied to the country-level face amount is also applied to their respective bonds. The

diversified market value is calculated by multiplying the diversified face amount by the bond

1



price. The diversified weight of each bond is determined by its share of the total diversified

market capital in the index.

Additionally, country weights are capped at 10%. Any excess weight above this cap

will be redistributed pro rata to smaller countries below the cap, across all bonds from

countries not capped at 10%. Appendix Figure A1 compares the country-level diversified and

non-diversified face amount for December 2018.

Appendix Figure A1
Effect of the diversification methodology on the country face amount
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Note: The figure illustrates the differences between the country-level face amount and their diversified versions, which
the EMBIGD uses to generate the diversified bond weights. The data used are from December 2018. Sources: J.P.
Morgan Markets, and authors’ calculations.
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B A Model of Inelastic Investors

In this appendix, we first provide additional material and derivations for the analysis in

Section 4.2. We then describe microfoundations for the assumed demand structure, analyzing

two related cases. In the first one, the inelasticity comes from investor risk aversion, while

the second case is rooted in a Value-at-Risk (VaR) constraint to which investors are subject.

B.1 Additional Derivations

From Equation (9) in the main text, and based on a first-order approximation for the

elastic component of the demand eκj π̂i,t around π̄i, we can write the market-value demand of

active investors as follows:

Ãi
t =

∑
j

(1− Λj π̄i)Wj,tθjξ
i
je

Λj π̄i + π̂i,t
∑
j

ΛjWj,tθjξ
i
je

Λj π̄i . (B1)

The first term captures investors’ average purchases of bond i, which are given by their

exogenous mandates ξij . The second term captures deviations from those purchases (i.e., the

elastic component of the demand), which is a function of π̂i,t.

For the remainder of the analysis, we focus on the case in which π̂i,t
(
rit+1

)
=

Et(rit+1)
Vt(rit+1)

.

Define Ri
t+1 as the next-period repayment per unit of the bond so that rit+1 ≡ Ri

t+1

qit
− rf ,

where rf denotes the risk-free rate. We can then write π̂i,t
(
rit+1

)
= qit

EtRi
t+1−qitrf

VtRi
t+1

. Without

loss of generality, consider a case where π̄i is close to zero. After substituting these expressions

into the equation, we can rewrite Equation (B1) as follows:

Ãi
t = qitĀi

t + qit

(
EtRi

t+1 − qitrf

VtRi
t+1

)∑
j

ΛjWj,tθjξ
i
j , (B2)

where Āi
t is defined such that qitĀi

t+1 =
∑

j Wj,tθjξ
i
j . We can interpret Āi

t as active investors’

holdings aimed at satisfying the fixed part of their mandates.

As for the demand of passive investors, let Mt denote the market value of the index I and

define Si
t as bond i’s face amount included in this index. For simplicity, assume that bond

i is only included in index I. Then, wi
t =

Si
tq

i
t

Mt
, and we can write the market-value passive

demand as

T̃ i
t = qit S

i
t

∑
j

Wj,t (1− θj)

Mt
= qitT i

t , (B3)

where T i
t ≡ Si

t

∑
j
Wj,t(1−θj)

Mt
denotes the face amount of bond i’s passive holdings.

After replacing Equations (B2) and (B3) in the market-clearing condition (Equation (10)
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in the main text), we obtain a closed-form solution for the bond price:

qit =
Et

(
Ri

t+1

)
rf

[
1− κit

Vt

(
Ri

t+1

)
Et

(
Ri

t+1

) (
Bi

t − T i
t − Āi

t

)]
, (B4)

where κit (Λ) ≡ 1∑
j ΛjWj,tθjξij

parameterizes the downward-slopping behavior of the demand.

It is a weighted average of investors’ {Λj} parameters, where the weights are given by the

amount that each investor allocates on bond i.

Next, we show that we can obtain an analogous pricing kernel under risk-averse investors

or under risk-neutral investors subject to a standard VaR constraint.

B.2 Microfoundation Based on Risk-Averse Investors

Consider a case where investors are risk averse and have mean-var preferences. They care

about both the total return of their portfolio and their return relative to a benchmark index

I they track. Additionally, they are heterogeneous and differ in their degree of risk aversion

and how their compensation depends on their total and relative return. Following the same

notation as in the main text, let j = {1, ..., J} denote the investor type. Let i = {1, ..., N}

denote the set of bonds that are part of the I index, and let wt =
{
w1
t , ..., w

N
t

}
be the vector

of index weights for each constituent bond. The vector rt+1 =
{
r1t+1, ..., r

N
t+1

}
denotes the

next-period (gross) returns (i.e., the bond gross return in excess of the risk-free rate, rf ).

Last, let Bt =
{
B1

t , ..., B
N
t

}
denote the bond supply.

For an investor j, their total compensation is a convex combination between the return

of their portfolio and the relative return versus the index I. Let xj,t =
{
x1j,t, ..., x

N
j,t

}
be

investor j’s vector of portfolio weights. The investor’s compensation is

TCj,t = θj (xj,t)
′ · rt+1 + (1− θj) (xj,t −wt)

′ · rt+1

= [xj,t − (1− θj)wt]
′ · rt+1,

where θj captures the weight of relative returns on the compensation.

Each investor chooses a combination of portfolio weights xj,t to maximize Et (TCj,t)−
σj

2 Vt (TCj,t), where σj captures the investor’s risk aversion. In matrix form, we can write

this problem as follows:

Maxxj [xj,t − (1− θj)wt]
′µt −

σj
2

[xj,t − (1− θj)wt]
′ Σt [xj,t − (1− θj)wt] ,

where µt ≡ Et (rt+1) denotes the expected excess return of the portfolio and Σt ≡ Vt (rt+1)

denotes the variance-covariance matrix of excess returns. The optimal portfolio allocation for
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investor j is given by

xj,t =
1

σj
Σ−1

t µt + (1− θj)wt. (B5)

The first term on the right-hand side of Equation (B5) captures the usual mean-variance

portfolio. An analogous expression can also be derived under CARA preferences (see, e.g.,

Pavlova and Sikorskaya, 2022). The second term reflects the reluctance of some investors to

deviate from the benchmark portfolio, w, indicating an inherently inelastic demand. It is not

a function of the expected return or riskiness of the bonds; rather, it depends only on how

much investors penalize deviations from the benchmark. Purely passive investors (i.e., those

with θj = 0 and σj → ∞) never deviate from the benchmark portfolio and exhibit a perfectly

inelastic demand.

Let Wj,t denote the wealth of each type of investor j. Then Bi
j,t =

Wj,tx
i
j,t

qit
are investor j’s

purchases of bond i, where qit denotes the bond price. For each bond i, its market-clearing

condition is qitB
i
t =

∑
j Wj,tx

i
j,t. After replacing these with the investors’ optimal portfolio

weights, the market-clearing conditions are given by
q1tB

1
t

...

qNt BN
t

 =
∑
j

Wj,t

[
1

σj
Σ−1

t µt + (1− θj)wt

]
(B6)

= Ãt + T̃ t,

where Ãt ≡
∑

j Wj,t
1
σj
Σ−1

t µt denotes the active component of investors’ demand (at market

value). Since investors are risk averse, Ãi
t is downward sloping and is a function of the expected

return of bond i and its variance-covariance matrix. The term T̃ t ≡ wt
∑

j Wj,t (1− θj)

denotes the passive demand (at market value).

Take the market-clearing condition of Equation (B6), and assume for simplicity only two

assets. For ease of exposition, consider that bond i is risky and bond −i is not. Under these

assumptions, the price for bond i is given by

qit =
Et

(
Ri

t+1

)
rf

×Ψi
t, (B7)

where Ri
t+1 denotes the bond’s next-period repayment per unit and Ψi

t captures the downward-

sloping nature of the demand. Ψi
t is given by

Ψi
t ≡ 1− κRA

t

Vt

(
Ri

t+1

)
Et

(
Ri

t+1

) (
Bi

t − T i
t

)
, (B8)

where 1/κRA
t ≡

∑
j
Wj,t

σj
denotes the weighted-average risk aversion coefficient and T i

t ≡ T̃ i
t /q

i
t
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denotes the (face amount) holdings of passive investors.

Note that the bond price in Equation (B8) is analogous to the one in Equation (B4).

The key difference is that with risk-averse lenders, the price elasticity is captured only by

investors’ risk aversion. In our main analysis, we do not specify the underlying mechanism

driving this elasticity.

B.3 Microfoundation Based on a VaR Constraint

An identical expression can also be derived for investors who are risk neutral and subject to

a VaR constraint. These constraints are common both in the literature and in the regulatory

sphere (e.g., Miranda-Agrippino and Rey, 2020).29

Consider an analogous setup to the one in the previous subsection. Investors are

heterogeneous and care about their absolute and relative return with respect to index

I. They are also risk neutral and subject to a VaR constraint that imposes an upper limit on

the amount of risk they can take. In particular, the problem for investor j can be written as

Max{x1
j,t+1,...x

N
j,t+1}

Et

(
[xj,t+1 − (1− αj) st+1]

′ · rt+1

)
subject to Φ2Vt

(
[xj,t+1 − (1− αj) st+1]

′ · rt+1

)
− 1 ≤ 0,

where the parameter Φ2 captures the intensity of the risk constraint. We view Φ2 as a

regulatory parameter that limits the amount of risk that an investor can take. Let ϱj denote

the Lagrange multiplier associated with the VaR constraint. It can be shown that the optimal

portfolio is given by

xj,t =
1

ϱjΦ2
Σ−1

t µt + (1− θj)wt. (B9)

The previous optimal portfolio is identical to that of Equation (B5), with the only

difference being that the risk-aversion parameter σ has been replaced by the product of the

Lagrange multiplier ϱj and the regulatory parameter Φ2. Following the same steps as before,

we can then derive an analogous pricing kernel to that of Equations (B7) and (B8). That is,

qit =
Et

(
Ri

t+1

)
rf

[
1− κVaRt

Vt

(
Ri

t+1

)
Et

(
Ri

t+1

) (
Bi

t − T i
t

) ]
, (B10)

where 1/κVaRt ≡
∑

j
Wj,t

λjΦ2 denotes the (weighted-average) intensity for which the VaR

constraint binds in the aggregate.

29Adrian and Shin (2014) provide a microfoundation for VaR constraints. Gabaix and Maggiori (2015) use a
similar constraint, in which a financier’s outside option is increasing in the size and variance of its balance
sheet.
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C Quantitative Model

In this appendix, we provide additional details for the quantitative model of sections 4 and 5.

C.1 Introducing Secondary Markets

The empirical elasticity computed in Section 3 exploits exogenous variation in the passive

demand in a small window around announcements of changes in the EMBIGD weights. To

tightly link our model with the empirical analysis, our baseline model in Section 4 already

incorporates a passive demand and exogenous changes in index weights, τ . There is, however,

a frequency disconnect in the sense that the model is calibrated at quarterly frequency,

making it unsuitable for quantifying high-frequency price reactions to changes in τ .

To address this frequency disconnect, we introduce secondary markets in the model. This

extension allows us to capture the high-frequency nature of our empirical elasticity. We

consider two instances of trading in secondary markets within each period: before and after

the realization of the index weights, τ ′. The timing assumption is as follows:

1. The endowment y is realized. The initial states are: {y, τ, B}

2. The government chooses d (y, τ, B) and B′ (y, τ, B).

3. The primary and secondary market open. Let qSM,0 (y, τ, B′) denote the opening price.

4. The next-period index weights τ ′ are realized.

5. The secondary market closes. Let qSM,1 (y, τ ′, B′) denote the bond closing price.

The first trading instance (SM0) occurs at the beginning of the period, immediately after

the government announces its default and debt choices. The bond price in this instance is

given by

qSM,0(y, τ, B′) = β⋆Ey′,τ ′|y,τR
(
y′, τ ′, B′) ΨSM,0

(
y, τ, B′) . (C1)

The term Ey′,τ ′|y,τR (y′, τ ′, B′) represents the expected next-period repayment of the bond,

conditional on the information available when the secondary market opens. Following the

derivation in Section 4.2 (see Equation (12)), the downward-sloping component of the price

function is

ΨSM,0
(
y, τ, B′) = 1− κ0

V{y′,τ ′}|{y,τ}R (y′, τ ′, B′)

E{y′,τ ′}|{y,τ}R (y′, τ ′, B′)

(
B′ − T

(
τ,B′)− Ā

)
(C2)

Notice that qSM,0 (y, τ, B′) coincides with the price in the primary market q (y, τ, B′), which

is the price relevant to the government.
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The second trading instance (SM1) occurs at the end of the period, when the secondary

markets closes and after the new index weights τ ′ are realized. In this case, the bond price is

qSM,1
(
B′, y, τ ′

)
= β⋆Ey′|yR

(
y′, τ ′, B′)ΨSM,1

(
y, τ ′, B′) . (C3)

The term Ey′|yR (y′, τ ′, B′) is the expected next-period repayment of the bond, conditional

on the information available when the secondary market closes. This term is analogous to

the one in Equation (C1), but incorporates the information provided by the realization of τ ′.

Similarly, the downward-sloping component of the price function is given by

ΨSM,1
(
y, τ ′, B′) ≡ 1− κ0

Vy′|yR (y′, τ ′, B′)

Ey′|yR (y′, τ ′, B′)

(
B′ − T

(
τ ′, B′)− Ā

)
. (C4)

Notice that, the only difference between qSM,1 and qSM,0 arises from the update of τ ′

since both the endowment and the stock of debt remain fixed while the secondary market is

open. Moreover, in the absence of secondary markets, the timing assumption is exactly the

same as in the baseline model.

C.2 Definition of Equilibrium

A Recursive Markov Equilibrium is a collection of value functions
{
V (·) , V r (·) , V d (·)

}
;

policy functions {d (·) , B′ (·)}; and bond prices q (·) such that:

1. Taking as given the bond price function q(.), the government’s policy functions B′ (·)

and d (·) solve the optimization problem in Equations (14), (15), and (16), and V (·),

V r (·), and V d (·) are the associated value functions.

2. Given B′ (·) and d (·), the repayment function R′(.) satisfies Equation (18).

3. Taking the repayment function as given, bond prices q(.) are consistent with Equation

(17).

C.3 Solution Method

We employ a global solution method to solve our quantitative model. We discretize the

output process y and the process for the passive demand share τ using Tauchen’s method.

We select 31 gridpoints for y and 15 for τ . As for B, we construct a grid consisting of 250

equally spaced points between B = 0 and B = 1.2. We ensure that B is sufficiently large

(approximately three times the average stock of debt) so that it never binds in our simulations.

The steps of the algorithm are as follows:

8



1. We start with a guess for the value functions V r (y, τ, B) and V d (y). We also guess

the bond price function q (y, τ, B′) as a function of the end-of-period stock of debt, B′.

2. Based on these guesses, we solve for the optimal bond policy B′ (y, τ, B), as described

in Equation (15). To this end, we use an optimizing algorithm based on Brent’s method

and employ cubic splines to interpolate the value functions and bond prices when

evaluating off-grid points. Given B′ (y, τ, B), we then update V r (y, τ, B).

3. We compute the value function for the case in which the government defaults in the

current period, V d (y), as given by Equation (16).

4. We solve for the government’s optimal default choice, as shown in Equation (14). As

standard in the literature, we convexify the default decision to achieve convergence.

In particular, we assume that in each period, the government’s value function V d (y)

is subject to an i.i.d. shock ϵV ∼ N (1, σ2
v) so that the government defaults if V r(·) <

V d(·)× ϵv. We choose σ2
v to be small enough (σ2

v = 2.25× 10−6) so that the convexified

solution does not significantly differ from the “true” solution of the model. Let d (y, τ, B)

denote the optimal default choice.

5. Taking the policy functions B′ (y, τ, B) and d (y, τ, B) as given, we update q (y, τ, B′)

according to Equation (17). We use cubic splines to evaluate the right-hand side of the

pricing equation at B′′ ≡ B′(y′, τ ′, B′).

6. We iterate over the previous steps until convergence of the value functions and the

bond price function.

C.4 Understanding the Source of the Biases

What explains the difference between the reduced-form and structural elasticity? To

address this question, we analyze the mechanisms behind changes in the expected repayment

function as a results of a shift in τ .

The first three panels of Figure C1 show the within-period effects resulting from shifts

in the passive demand. To this end, we shock τ ′, and analyze the responses of bond prices,

expected repayment, and default risk from the opening to the closing of the secondary market.

The blue lines show the results under our baseline parameterization, while the solid and

dotted gray lines indicate outcomes for scenarioes where the {τ} process is less persistent.

Panels (a) and (b) show that there is a monotone relation between changes in the passive

demand, bond prices, and expected repayment. For a 5% increase in the passive demand (as

9



Appendix Figure C1
Effects of Changes in demand on prices and policies

(a) Bond price, ∆q(.)/q(.) (b) Expected repayment, ∆ER(.)′/ER(.)′

(c) Default risk, ∆Ed(.)′/Ed(.)′ (d) Stock of debt, ∆B′(.)/B′(.)

Note: The figure shows how changes in the passive demand (i.e., FIR) affect bond prices, expected repayment, default
risk, and the bond supply. The blue lines show results under our baseline calibration. The gray lines show results for
parameterizations in which we decrease the persistence of the FIR. For these cases, we set ρτ = 0.50 and ρτ = 0.25. In
all cases, we evaluate these changes at the mean value for endowment and debt.

a share of the total stock of debt), bond prices increase by 1% and about half of that increase

is explained by an increase in expected repayment. Panel (c) shows the change in one-period

ahead default risk. For a 5% increase in the passive demand, default risk decreases more than

10%. Importantly, as the persistence of the τ process decreases, the implied changes on bond

prices, expected repayment, and default risk decrease.

While the one-period ahead default risk decreases on impact, one cannot directly map

that reaction into higher bond prices. This is because, lenders’ anticipate that the government

will increase its debt supply as a response to the passive demand shock. To see this, Panel (d)

shows how the government’s current choice of debt responds to the τ ′ shock. The government

finds it optimal to adjust its stock of debt in response to a change in the passive demand.

The response, however, is not one-to-one: for a 5% increase (decrease) in the passive demand

(as a share of the stock of debt), the government raises (lowers) its debt by less than 1%.

To shed further light on the dynamics of bond prices and policies, Figure C2 shows the

impulse response to an increase in the passive demand. The top panel depicts the responses
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Appendix Figure C2
Impulse response to an increase in the passive demand

(a) Effects on debt and bond prices

Passive demand, ∆T ′/B Stock of debt, ∆B′/B Bond price, ∆q/q

(b) Decomposition: Counterfactual with fixed debt

Bond price, ∆q/q Convenience Price, ∆Ψ/Ψ Expected repayment, ∆E/E

Note: The top panel shows impulse responses to an increase in the passive demand. The bottom panel shows a
decomposition for bond price changes across time, in a counterfactual in which the stock of debt remains fixed.

of debt and bond prices. The government increases its debt upon the shock and the effects

are quite persistent. Since the increase is not one-to-one with respect to the passive demand

shock, bond prices increase as result of the larger demand —approximately 0.50%. The initial

increase in bond prices is reversed after the first two quarters, as the passive demand shock

fades, but the stock of debt (and thus default risk) remains higher. As a comparison, the

orange line shows a counterfactual in which we keep the bond policy fixed. In this case,

the bond price increases significantly more —about 1%. The bottom panel decomposes the

change in bond prices under the counterfactual scenario in which debt is fixed. Since the

passive demand shock is persistent, the convenience price term Ψ(.) increases initially, and

its effects gradually fade over time. The expected future trajectories of Ψ(.), as well as B′(.)

and d(.), influence current and future expected repayments, as shown in the right panel.
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D Additional Figures and Tables

Appendix Figure D1
EMBI Global country-level weights in December 2018
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Note: The figure illustrates the EMBI Global country-level diversified and non-diversified weights for December 2018.
Country-level weights are computed as the sum of the weights of all bonds from each country included in the index.
Sources: J.P. Morgan Markets, and authors’ calculations.
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Appendix Figure D2
Assets under management benchmarked to emerging economies bond indexes
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Note: The figure shows assets under management, in billions of U.S. dollars, benchmarked to emerging economies bond
indexes. Sources: J.P. Morgan Markets, and authors’ calculations.

Appendix Figure D3
Share of U.S. dollar-denominated emerging economies sovereign debt
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Note: The bars show the U.S. dollar-denominated sovereign debt in the EMBI Global index as a percentage of each
country’s general government debt securities issued in international markets. Averages are derived by calculating
this percentage for each country and year, and then averaging these values annually across countries. Each country’s
percentage is weighted by its debt amount outstanding included in the EMBI Global indexes. Sources: BIS, J.P. Morgan
Markets, and authors’ calculations.
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Appendix Figure D4
Share of U.S. dollar-denominated emerging economies sovereign debt
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Note: The bars show the U.S. dollar-denominated sovereign debt in the EMBI Global index as a percentage of each
country’s general government debt securities issued in international markets. The averages are derived by calculating
this percentage for each country and year, and then averaging these values across the years 2016–2022. Sources: BIS,
J.P. Morgan Markets, and authors’ calculations.
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Appendix Figure D5
Timeline
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Appendix Figure D6
Estimated inverse demand elasticities for financial markets
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Note: EM IUSD Sovereign Bonds stands for emerging economies sovereign bonds issued internationally in U.S. dollars,
while EM LC Sovereign Bonds stands for those issued in local currency. The elasticities in Jiang et al. (2021),
Krishnamurthy and Vissing-Jorgensen (2012), and Greenwood et al. (2015) are taken from the review Table 2 of Mian
et al. (2022) and are converted into an inverse demand price elasticity, assuming a duration of 7 for the average bond.
For Choi et al. (2024), we take the midpoint elasticity from the IV estimates, while for our paper, we compute the
midpoint in elasticity from Table 3. For the emerging economies local currency sovereign bonds, we take the estimated
number in Table 15, Panel D of Pandolfi and Williams (2019) for GBI bonds, which we adjust by the share of AUM
(23.6%) that behave de facto in a passive way. For that, we compute the asset share in EPFR tracking the GBI-EM
Global Diversified with an R2 exceeding that of ETFs tracking the same index. We determine the average R2 for ETFs
by using a weighted average (based on assets) of the R2 of the ETFs.
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Appendix Table D1
Flows Implied by Rebalancing (FIR)

c FAc,t−1 DFAc,t−1 qc,t−1 MVc,t−1 wc,t−1 wc,t wBH
c,t FIRc,t

A 1,000 1,000 1.00 1,000 4.72% 2.85% 3.97% -14.43%
B 2,000 2,000 1.20 2,400 11.34% 7.91% 11.03% -16.70%
C 3,000 3,000 0.90 2,700 12.75% 8.07% 11.25% -15.14%
D 7,000 6,429 1.10 7,071 33.40% 25.72% 34.04% -13.24%
E 12,000 10,000 0.80 8,000 37.79% 31.34% 39.71% -10.18%
F - - - - - 24.11% 0.00% -

Note: The diversified face amount (DFAc,t−1) is computed following Equation (A1). The market value
(MVc,t−1) is based on the diversified face amount and bond price information, MVc,t−1 ≡ DFAc,t−1 × qc,t−1.

Observed and buy-and-hold index weights are given by wc,t =
MVc,t∑
c MVc,t

and wBH
c,t =

MV BH
c,t∑

c MV BH
c,t

. The FIR

measure is computed based on Equation (2), assuming a value of AUM tracking the index equal to 8, 000.
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Appendix Table D2
Log price and FIR: varying the share of passive funds

Dependent Variable: Log Price

25% 30% 35% 40% 45%

FIR X Post 0.547*** 0.442** 0.367** 0.310** 0.266**

(0.190) (0.188) (0.156) (0.132) (0.114)

Bond-Month FE Yes Yes Yes Yes Yes

Observations 105,548 105,548 105,548 105,548 105,548

N. of Bonds 738 738 738 738 738

N. of Countries 68 68 68 68 68

N. of Clusters 1,576 1,576 1,576 1,576 1,576

F (FS) 419 1,862 1,813 1,764 1,715

Note: This table presents 2SLS estimates of log bond prices on
the FIR measure (defined in Equation (2)), instrumented by Z
(defined in Equation (4)), around rebalancing dates. The first-
and second-stage equations are described in Equation (6). The
estimations use a symmetric five-trading-day window, with Post
as an indicator variable (equal to 1 for the five trading days after
rebalancing, and 0 otherwise). Each different column indicates
the share of passive funds used to construct the FIR face amount
measure. Month fixed effects are dummy variables equal to 1 for
each rebalancing month, and 0 otherwise. Standard errors are
clustered at the country-month level, and the sample period is
2016–2018. *, **, and *** denote statistically significant at the
10%, 5%, and 1% level, respectively.
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Appendix Table D3
Log price and FIR: OLS

Dependent Variable: Log Price

[-5:+5] No h=-1

Post 0.000* 0.001* 0.000* 0.001**

(0.000) (0.000) (0.000) (0.000)

FIR 1.160*

(0.643)

FIR X Post 0.197*** 0.198** 0.197*** 0.134 0.236*** 0.167*

(0.076) (0.077) (0.076) (0.086) (0.076) (0.092)

Bond FE Yes Yes No No No No

Month FE Yes No No No No No

Bond Characteristics-Month FE No Yes No No No No

Country-Month FE No Yes No No No No

Bond-Month FE No No Yes Yes Yes Yes

Month-Post FE No No No Yes No Yes

Bond Controls No Yes No No No No

Observations 105,548 105,508 105,548 105,548 84,433 84,433

N. of Bonds 738 738 738 738 738 738

N. of Countries 68 68 68 68 68 68

N. of Clusters 1,576 1,575 1,576 1,576 1,576 1,576

Note: This table presents OLS estimates of log bond prices on the FIR measure (Equation
(2)), around rebalancing dates. The estimations use a symmetric five-trading-day window,
with Post as an indicator variable (equal to 1 for the five trading days after rebalancing, and
0 otherwise). Month fixed effects are dummy variables equal to 1 for each rebalancing month
(0 otherwise), and bond characteristics are fixed effects that interact maturity and ratings
fixed effects. Maturity fixed effects are constructed by dividing a bond’s time to maturity
into four different categories: short (less than 5 years), medium (5–10 years), long (10–20
years), and very long (20+ years). Ratings from each bond are from Moody’s. Bond controls
indicate whether the estimation includes the log face amount and log stripped spread of
the bond. Standard errors are clustered at the country-month level, and the sample period
is 2016–2018. *, **, and *** denote statistically significant at the 10%, 5%, and 1% level,
respectively.
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Appendix Table D4
Log price and FIR Constant Prices: OLS

Dependent Variable: Log Price

[-5:+5] No h=-1

Post 0.001* 0.001* 0.001* 0.001**

(0.000) (0.000) (0.000) (0.000)

FIR 1.112*

(0.644)

FIR X Post 0.230*** 0.232*** 0.231*** 0.142* 0.266*** 0.177*

(0.075) (0.076) (0.075) (0.086) (0.075) (0.092)

Bond FE Yes Yes No No No No

Month FE Yes No No No No No

Bond Characteristics-Month FE No Yes No No No No

Country-Month FE No Yes No No No No

Bond-Month FE No No Yes Yes Yes Yes

Month-Post FE No No No Yes No Yes

Bond Controls No Yes No No No No

Observations 105,548 105,508 105,548 105,548 84,433 84,433

N. of Bonds 738 738 738 738 738 738

N. of Countries 68 68 68 68 68 68

N. of Clusters 1,576 1,575 1,576 1,576 1,576 1,576

Note: This table presents OLS estimates of log bond prices on a variation of the FIR measure
from Equation (2), around rebalancing dates. This alternative measure holds prices constant
when computing benchmark weights using the previous rebalancing period prices. The
estimations use a symmetric five-trading-day window, with Post as an indicator variable
(equal to 1 for the five trading days after rebalancing, and 0 otherwise). Month fixed effects are
dummy variables equal to 1 for each rebalancing month (0 otherwise), and bond characteristics
are fixed effects that interact maturity and ratings fixed effects. Maturity fixed effects are
constructed by dividing a bond’s time to maturity into four different categories: short (less
than 5 years), medium (5–10 years), long (10–20 years), and very long (20+ years). Ratings
from each bond are from Moody’s. Bond controls indicate whether the estimation includes
the log face amount and log stripped spread of the bond. Standard errors are clustered at the
country-month level, and the sample period is 2016–2018. *, **, and *** denote statistically
significant at the 10%, 5%, and 1% level, respectively.
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Appendix Table D5
Log price and FIR: different windows

Panel A-Dependent Variable: Log Price

[-2:+2] [-3:+3] [-4:+4] [-5:+5]

FIR X Post 0.146*** 0.197*** 0.221** 0.231**

(0.053) (0.071) (0.086) (0.099)

Bond-Month FE Yes Yes Yes Yes

Observations 42,217 63,327 84,435 105,548

N. of Bonds 738 738 738 738

N. of Countries 68 68 68 68

N. of Clusters 1,576 1,576 1,576 1,576

F (FS) 1,660 1,662 1,664 1,666

Panel B-Dependent Variable: Log Price (Excl. h=-1)

[-2:+1] [-3:+2] [-4:+3] [-5:+4]

FIR X Post 0.220*** 0.257*** 0.271*** 0.263***

(0.056) (0.074) (0.087) (0.098)

Bond-Month FE Yes Yes Yes Yes

Observations 21,106 42,216 63,325 84,433

N. of Bonds 738 738 738 738

N. of Countries 68 68 68 68

N. of Clusters 1,576 1,576 1,576 1,576

F (FS) 1,667 1,667 1,669 1,670

Note: This table presents 2SLS estimates of bond log prices
on the FIR measure, with each column reporting estimates
for different h-day symmetric windows before and after a
rebalancing event. The sample period, the construction of
h−day windows, and the 2SLS procedure are identical to
those described in Table 3. Standard errors are clustered at
the country-month level. *, **, and *** denote statistically
significant at the 10%, 5%, and 1% level, respectively.
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Appendix Table D6
Log price and FIR: dropping quasi-sovereign bonds

Dependent Variable: Log Price

FIR 1.078

(0.924)

FIR X Post 0.249** 0.249** 0.249** 0.175*

(0.107) (0.108) (0.107) (0.103)

Post 0.000 0.000 0.000

(0.000) (0.000) (0.000)

Bond FE Yes Yes No No

Month FE Yes No No No

Bond Characteristics-Month FE No Yes No No

Country-Month FE No Yes No No

Bond-Month FE No No Yes Yes

Month-Post FE No No No Yes

Bond Controls No Yes No No

Observations 73,140 73,100 73,140 73,140

N. of Bonds 430 430 430 430

N. of Countries 65 65 65 65

N. of Clusters 1,513 1,512 1,513 1,513

F (FS) 0 3,151 3,231 1,099

Note: This table presents 2SLS estimates of log bond prices on the FIR
measure (Equation (2)), instrumented by Z (Equation (4)), around
rebalancing dates. The first- and second-stage equations are described
in Equation (6). The estimations use a symmetric five-trading-day
window, with Post as an indicator variable (equal to 1 for the five
trading days after rebalancing, and 0 otherwise). Month fixed effects are
dummy variables equal to 1 for each rebalancing month (0 otherwise),
and bond characteristics are fixed effects that interact maturity and
ratings fixed effects. Maturity fixed effects are constructed by dividing
a bond’s time to maturity into four different categories: short (less
than 5 years), medium (5–10 years), long (10–20 years), and very
long (20+ years). Ratings from each bond are from Moody’s. Bond
controls indicate whether the estimation includes the log face amount
and log stripped spread of the bond. Standard errors are clustered at
the country-month level, and the sample period is 2016–2018. *, **,
and *** denote statistically significant at the 10%, 5%, and 1% level,
respectively.
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Appendix Table D7
Log price and FIR: spread heterogeneity (3 groups)

Dependent Variable: Log Price

High Spread Median Spread Low Spread

FIR 2.179 0.140 0.391

(1.810) (0.508) (0.361)

FIR X Post 0.380** 0.381** 0.325** 0.322** 0.087 0.087

(0.166) (0.165) (0.152) (0.151) (0.098) (0.098)

Post 0.001* 0.001* 0.001** 0.001** -0.000 -0.000

(0.001) (0.001) (0.000) (0.000) (0.000) (0.000)

Bond FE Yes No Yes No Yes No

Month FE Yes No Yes No Yes No

Bond-Month FE No Yes No Yes No Yes

Observations 28,105 28,104 28,055 28,053 28,276 28,276

N. of Bonds 381 381 453 453 375 375

N. of Countries 58 58 51 51 43 43

N. of Clusters 975 975 837 837 634 634

F (FS) 501 2,342 436 720 0 882

Note: This table presents 2SLS estimates of log bond prices on the FIR
measure (Equation (2)), instrumented by Z (Equation (4)), around
rebalancing dates. The first- and second-stage equations are described
in Equation (6). The estimations use a symmetric four-trading-day
window excluding h = −1 and h = +5, with Post as an indicator
variable (equal to 1 for the five trading days after rebalancing, and
0 otherwise). The sample is divided into bonds with high spreads
(Columns 1 and 2), median spreads (Columns 3 and 4), and low spread
(Columns 5 and 6), with spreads divided according to their 33.3 and
66.6 percentile into the three different buckets. Month fixed effects
are dummy variables equal to 1 for each rebalancing month, and 0
otherwise. Standard errors are clustered at the country-month level,
and the sample period is 2016–2018. *, **, and *** denote statistically
significant at the 10%, 5%, and 1% level, respectively.
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